High-resolution hippocampal diffusion tensor imaging of mesial temporal sclerosis in refractory epilepsy.
axial diffusivity
dentate gyrus
diffusion MRI
mesial temporal sclerosis
Journal
Epilepsia
ISSN: 1528-1167
Titre abrégé: Epilepsia
Pays: United States
ID NLM: 2983306R
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
revised:
10
06
2022
received:
02
02
2022
accepted:
13
06
2022
pubmed:
26
6
2022
medline:
21
9
2022
entrez:
25
6
2022
Statut:
ppublish
Résumé
We explore the possibility of using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to discern microstructural abnormalities in the hippocampus indicative of mesial temporal sclerosis (MTS) at the subfield level. We analyzed data from 57 patients with refractory epilepsy who previously underwent 3.0-T magnetic resonance imaging (MRI) including DTI as a standard part of presurgical workup. We collected information about each subject's seizure semiology, conventional electroencephalography (EEG), high-density EEG, positron emission tomography reports, surgical outcome, and available histopathological findings to assign a final diagnostic category. We also reviewed the radiology MRI report to determine the radiographic category. DTI- and NODDI-based metrics were obtained in the hippocampal subfields. By examining diffusion characteristics among subfields in the final diagnostic categories, we found lower orientation dispersion indices and elevated axial diffusivity in the dentate gyrus in MTS compared to no MTS. By similarly examining among subfields in the different radiographic categories, we found all diffusion metrics were abnormal in the dentate gyrus and CA1. We finally examined whether diffusion imaging would better inform a radiographic diagnosis with respect to the final diagnosis, and found that dentate diffusivity suggested subtle changes that may help confirm a positive radiologic diagnosis. The results suggest that diffusion metric analysis at the subfield level, especially in dentate gyrus and CA1, maybe useful for clinical confirmation of MTS.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2301-2311Informations de copyright
© 2022 International League Against Epilepsy.
Références
Zhao X, Zhou Z, Zhu W, Xiang H. Role of conventional magnetic resonance imaging in the screening of epilepsy with structural abnormalities: a pictorial essay. Am J Nucl Med Mol Imaging. 2017;7:126.
Thom M. Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40:520-43.
Nadgir R, Yousem DM. Neuroradiology: the requisites e-book. Amsterdam, The Netherlands: Elsevier Health Sciences; 2016.
Mettenburg JM, Branstetter BF, Wiley CA, Lee P, Richardson RM. Improved detection of subtle mesial temporal sclerosis: validation of a commercially available software for automated segmentation of hippocampal volume. Am J Neuroradiol. 2019;40:440-5.
Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J. The hippocampus book. Oxfords; Oxford University Press; 2006.
Reyes-Garcia SZ, Scorza CA, Araújo NS, Ortiz-Villatoro NN, Jardim AP, Centeno R, et al. Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy. Sci Rep. 2018;8:1-15.
Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis-a technical review. NMR Biomed. 2002;15:456-67.
Salmenpera TM, Symms MR, Boulby PA, Barker GJ, Duncan JS. Postictal diffusion weighted imaging. Epilepsy Res. 2006;70:133-43.
Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia. 2011;52:32-4.
Sanches P, Fujisao EK, Braga AMS, Cristaldo NR, Dos Reis R, Yamashita S, et al. Voxel-based analysis of diffusion tensor imaging in patients with mesial temporal lobe epilepsy. Epilepsy Res. 2017;132:100-8.
Diehl B, Najm I, Ruggieri P, Tkach J, Mohamed A, Morris H, et al. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia. 2001;42:21-8.
Hufnagel A, Weber J, Marks S, Ludwig T, De Greiff A, Leonhardt G, et al. Brain diffusion after single seizures. Epilepsia. 2003;44:54-63.
Diehl B, Symms MR, Boulby PA, Salmenpera T, Wheeler-Kingshott CAM, Barker GJ, et al. Postictal diffusion tensor imaging. Epilepsy Res. 2005;65:137-46.
Otte WM, van Eijsden P, Sander JW, Duncan JS, Dijkhuizen RM, Braun KPJ. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia. 2012;53:659-67.
Sone D, Sato N, Ota M, Maikusa N, Kimura Y, Matsuda H. Abnormal neurite density and orientation dispersion in unilateral temporal lobe epilepsy detected by advanced diffusion imaging. NeuroImage Clin. 2018;20:772-82.
Winston GP, Vos SB, Caldairou B, Hong S-J, Czech M, Wood TC, et al. Microstructural imaging in temporal lobe epilepsy: diffusion imaging changes relate to reduced neurite density. NeuroImage Clin. 2020;26:102231.
Salmenpera TM, Simister RJ, Bartlett P, Symms MR, Boulby PA, Free SL, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res. 2006;71:102-6.
Henry TR, Chupin M, Lehéricy S, Strupp JP, Sikora MA, Sha ZY, et al. Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T. Radiology. 2011;261:199-209.
Goubran M, Bernhardt BC, Cantor-Rivera D, Lau JC, Blinston C, Hammond RR, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp. 2016;37:1103-19.
Sala-Padro J, Miró J, Rodriguez-Fornells A, Quintana M, Vidal N, Plans G, et al. Hippocampal microstructural architecture and surgical outcome: hippocampal diffusivity could predict seizure relapse. Seizure. 2020;76:84-8.
Treit S, Little G, Steve T, Nowacki T, Schmitt L, Wheatley BM, et al. Regional hippocampal diffusion abnormalities associated with subfield-specific pathology in temporal lobe epilepsy. Epilepsia Open. 2019;4:544-54.
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front Neurol. 2018;9:1023.
Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience. 2006;140:685-97.
Wieser HG, Blume WT, Fish D, Goldensohn E, Hufnagel A, King D, et al. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42:282-6.
Nemtsas P, Birot G, Pittau F, Michel CM, Schaller K, Vulliemoz S, et al. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia. 2017;58:1027-36.
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782-90.
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063-78.
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000-16.
Carlson ML, Toueg TN, Khalighi MM, Castillo J, Shen B, Azevedo EC, et al. Hippocampal subfield imaging and fractional anisotropy show parallel changes in Alzheimer's disease tau progression using simultaneous tau-PET/MRI at 3T. Alzheimers Dement. 2021;13:e12218.
Xie L, Wisse LEM, Pluta J, de Flores R, Piskin V, Manjón JV, et al. Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease. Hum Brain Mapp. 2019;40:3431-51.
Parivash SN, Goubran M, Mills BD, Rezaii P, Thaler C, Wolman D, et al. Longitudinal changes in hippocampal subfield volume associated with collegiate football. J Neurotrauma. 2019;36:2762-73.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116-28.
Modat M, Cash DM, Daga P, Winston GP, Duncan JS, Ourselin S. Global image registration using a symmetric block-matching approach. J Med Imaging. 2014;1:024003.
Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity. 2005;95:221-7.
Alizadeh M, Kozlowski L, Muller J, Ashraf N, Shahrampour S, Mohamed FB, et al. Hemispheric regional based analysis of diffusion tensor imaging and diffusion tensor tractography in patients with temporal lobe epilepsy and correlation with patient outcomes. Sci Rep. 2019;9:1-8.
Salo RA, Miettinen T, Laitinen T, Gröhn O, Sierra A. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat-histological validation with Fourier-based analysis. NeuroImage. 2017;152:221-36.
Marucci G, Rubboli G, Giulioni M. Role of dentate gyrus alterations in mesial temporal sclerosis. Clin Neuropathol. 2010;29:32-5.
Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54:1315-29.
De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia. 2016;57:445-54.