Reverse Genetics to Engineer Positive-sense RNA Virus Variants.
Journal
Journal of visualized experiments : JoVE
ISSN: 1940-087X
Titre abrégé: J Vis Exp
Pays: United States
ID NLM: 101313252
Informations de publication
Date de publication:
09 06 2022
09 06 2022
Historique:
entrez:
27
6
2022
pubmed:
28
6
2022
medline:
30
6
2022
Statut:
epublish
Résumé
The lack of a convenient method for the iterative generation of diverse full-length viral variants has impeded the study of directed evolution in RNA viruses. By integrating a full RNA genome error-prone PCR and reverse genetics, random genome-wide substitution mutagenesis can be induced. We have developed a method using this technique to synthesize diverse libraries to identify viral mutants with phenotypes of interest. This method, called full-length mutant RNA synthesis (FL-MRS), offers the following advantages: (i) the ability to create a large library via a highly efficient one-step error-prone PCR; (ii) the ability to create groups of libraries with varying levels of genetic diversity by manipulating the fidelity of DNA polymerase; (iii) the creation of a full-length PCR product that can directly serve as a template for mutant RNA synthesis; and (iv) the ability to create RNA that can be delivered into host cells as a non-selected input pool to screen for viral mutants of the desired phenotype. We have found, using a reverse genetics approach, that FL-MRS is a reliable tool to study viral-directed evolution at all stages in the life cycle of the hepatitis C virus, JFH1 isolate. This technique appears to be an invaluable tool to employ directed evolution to understand adaptation, replication, and the role of viral genes in pathogenesis and antiviral resistance in positive-sense RNA viruses.
Substances chimiques
RNA, Viral
0
RNA
63231-63-0
Types de publication
Journal Article
Video-Audio Media
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM