The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing.
CDK inhibitors
Cell cycle
Erythropoiesis
Erythropoietic stress response
Glucocorticoids
Replication forks
Journal
International journal of hematology
ISSN: 1865-3774
Titre abrégé: Int J Hematol
Pays: Japan
ID NLM: 9111627
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
05
06
2022
accepted:
07
06
2022
revised:
05
06
2022
pubmed:
28
6
2022
medline:
28
7
2022
entrez:
27
6
2022
Statut:
ppublish
Résumé
Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57
Identifiants
pubmed: 35759181
doi: 10.1007/s12185-022-03406-9
pii: 10.1007/s12185-022-03406-9
doi:
Substances chimiques
Cyclin-Dependent Kinase Inhibitor p57
0
Erythropoietin
11096-26-7
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
163-173Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL141402
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK130498
Pays : United States
Informations de copyright
© 2022. Japanese Society of Hematology.
Références
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8): e1002533.
pubmed: 27541692
pmcid: 4991899
doi: 10.1371/journal.pbio.1002533
Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Regan M, Weatherall D, Chou DP, Eisele TP, Flaxman SR, Pullan RL, Brooker SJ, Murray CJ. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24.
pubmed: 24297872
pmcid: 3907750
doi: 10.1182/blood-2013-06-508325
Axelrad AA, McLeod DL, Shreeve MM, Heath DS. Properties of cells that produce erythrocytic colonies in vitro. In: Robinson WA, ed. Hemopoiesis in culture. Washington, D.C.: US Government Printing Office; 1974, p. 226.
Heath DS, Axelrad AA, McLeod DL, Shreeve MM. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 1976;47(5):777–92.
pubmed: 1260134
doi: 10.1182/blood.V47.5.777.777
Iscove NN, Sieber F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol. 1975;3(1):32–43.
pubmed: 1157835
Gregory CJ, McCulloch EA, Till JE. Erythropoietic progenitors capable of colony formation in culture: state of differentiation. J Cell Physiol. 1973;81(3):411–20.
pubmed: 4713721
doi: 10.1002/jcp.1040810313
Gregory CJ, Tepperman AD, McCulloch EA, Till JE. Erythropoietic progenitors capable of colony formation in culture: response of normal and genetically anemic W-W-V mice to manipulations of the erythron. J Cell Physiol. 1974;84(1):1–12.
pubmed: 4602376
doi: 10.1002/jcp.1040840102
Gregory CJ. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol. 1976;89(2):289–301.
pubmed: 987043
doi: 10.1002/jcp.1040890212
Broudy VC, Lin NL, Priestely GV, Nocka K, Wolf NS. Interaction of stem cell factor and its receptor c-kit mediates lodgement and acute expansion of hematopoietic cells in the murine spleen. Blood. 1996;88:75–81.
pubmed: 8704204
doi: 10.1182/blood.V88.1.75.75
Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007;109(10):4494–502.
pubmed: 17284534
pmcid: 1885504
doi: 10.1182/blood-2006-04-016154
von Lindern M, Schmidt U, Beug H. Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s tyrosine kinase. Cell Cycle. 2004;3(7):876–9.
doi: 10.4161/cc.3.7.1001
Socolovsky M, Fallon AEJ, Lodish HF. The prolactin receptor rescues EpoR
pubmed: 9716574
doi: 10.1182/blood.V92.5.1491
Papayannopoulou T, Finch CA. On the in vivo action of erythropoietin: a quantitative analysis. J Clin Investig. 1972;51(5):1179–85.
pubmed: 5020431
pmcid: 292248
doi: 10.1172/JCI106911
Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Schutz G, Beug H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13(22):2996–3002.
pubmed: 10580006
pmcid: 317156
doi: 10.1101/gad.13.22.2996
von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, Lowenberg B, Beug H. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550–9.
doi: 10.1182/blood.V94.2.550
Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J, Socolovsky M. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol. 2010;8(9):e1000484.
pubmed: 20877475
pmcid: 2943437
doi: 10.1371/journal.pbio.1000484
Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995;83:59–67.
pubmed: 7553874
doi: 10.1016/0092-8674(95)90234-1
Oudelaar AM, Beagrie RA, Gosden M, de Ornellas S, Georgiades E, Kerry J, Hidalgo D, Carrelha J, Shivalingam A, El-Sagheer AH, Telenius JM, Brown T, Buckle VJ, Socolovsky M, Higgs DR, Hughes JR. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat Commun. 2020;11(1):2722.
pubmed: 32483172
pmcid: 7264236
doi: 10.1038/s41467-020-16598-7
Hwang Y, Futran M, Hidalgo D, Pop R, Iyer DR, Scully R, Rhind N, Socolovsky M. Global increase in replication fork speed during a p57
pubmed: 28560351
pmcid: 5446218
doi: 10.1126/sciadv.1700298
Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M. Global DNA demethylation during mouse erythropoiesis in vivo. Science. 2011;334(6057):799–802.
pubmed: 22076376
pmcid: 3230325
doi: 10.1126/science.1207306
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–201.
pubmed: 26000487
pmcid: 4441768
doi: 10.1016/j.cell.2015.04.044
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.
pubmed: 26000488
pmcid: 4481139
doi: 10.1016/j.cell.2015.05.002
Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R, Waisman A, Huh JR, Klein AM, Socolovsky M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 2018;555(7694):54–60.
pubmed: 29466336
pmcid: 5899604
doi: 10.1038/nature25741
Weinreb C, Wolock S, Klein AM. SPRING: a kinetic interface for visualizing high dimensional single-cell expression data. Bioinformatics. 2018;34(7):1246–8.
pubmed: 29228172
doi: 10.1093/bioinformatics/btx792
Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell snapshots. Proc Natl Acad Sci USA. 2018;115(10):E2467–76.
pubmed: 29463712
pmcid: 5878004
doi: 10.1073/pnas.1714723115
Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.
pubmed: 10724173
doi: 10.1038/35004599
Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.
pubmed: 9393859
doi: 10.1016/S0092-8674(00)80453-5
Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge OJ, Thoren LA, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SE. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.
pubmed: 15851035
doi: 10.1016/j.cell.2005.02.013
Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, Weinreb C, Wolock S, Hannah R, Diamanti E, Kent DG, Göttgens B, Wilson NK. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in kit mutant mice. Blood. 2018;131(21):e1–11.
pubmed: 29588278
pmcid: 5969381
doi: 10.1182/blood-2017-12-821413
Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, Wilson NK, Kent DG, Gottgens B. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128(8):e20-31.
pubmed: 27365425
pmcid: 5305050
doi: 10.1182/blood-2016-05-716480
Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19(4):271–81.
pubmed: 28319093
pmcid: 5496982
doi: 10.1038/ncb3493
Hwang Y, Hidalgo D, Socolovsky M. The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mech Dis. 2021;13(2): e1504.
pubmed: 32916032
Eastman AE, Chen X, Hu X, Hartman AA, Pearlman Morales AM, Yang C, Lu J, Kueh HY, Guo S. Resolving cell cycle speed in one snapshot with a live-cell fluorescent reporter. Cell Rep. 2020;31(12): 107804.
pubmed: 32579930
pmcid: 7418154
doi: 10.1016/j.celrep.2020.107804
Porpiglia E, Hidalgo D, Koulnis M, Tzafriri AR, Socolovsky M. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biol. 2012;10(8): e1001383.
pubmed: 22969412
pmcid: 3433736
doi: 10.1371/journal.pbio.1001383
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Scalf SM, Eastman AE, Chen J-J, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nat Commun. 2021;12(1):7334.
pubmed: 34921133
pmcid: 8683474
doi: 10.1038/s41467-021-27562-4
Nordman J, Orr-Weaver TL. Regulation of DNA replication during development. Development. 2012;139(3):455–64.
pubmed: 22223677
pmcid: 3252349
doi: 10.1242/dev.061838
Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJ, Koren A, Nussenzweig MC. Humoral immunity. T cell help controls the speed of the cell cycle in germinal center B cells. Science. 2015;349(6248):643–6.
pubmed: 26184917
pmcid: 4809261
doi: 10.1126/science.aac4919
Ashley RJ, Yan H, Wang N, Hale J, Dulmovits BM, Papoin J, Olive ME, Udeshi ND, Carr SA, Vlachos A, Lipton JM, Da Costa L, Hillyer C, Kinet S, Taylor N, Mohandas N, Narla A, Blanc L. Steroid resistance in diamond blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J Clin Investig. 2020;130(4):2097–110.
pubmed: 31961825
pmcid: 7108903
doi: 10.1172/JCI132284
Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett. 2019;593(20):2840–52.
pubmed: 31562821
doi: 10.1002/1873-3468.13625
Bartholdy B, Lajugie J, Yan Z, Zhang S, Mukhopadhyay R, Greally JM, Suzuki M, Bouhassira EE. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2018;2(15):1833–52.
pubmed: 30061308
pmcid: 6093741
doi: 10.1182/bloodadvances.2018015651
Yu Y, Mo Y, Ebenezer D, Bhattacharyya S, Liu H, Sundaravel S, Giricz O, Wontakal S, Cartier J, Caces B, Artz A, Nischal S, Bhagat T, Bathon K, Maqbool S, Gligich O, Suzuki M, Steidl U, Godley L, Skoultchi A, Greally J, Wickrema A, Verma A. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem. 2013;288(13):8805–14.
pubmed: 23306203
pmcid: 3610956
doi: 10.1074/jbc.M112.423756
Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ, Meissner A. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell. 2012;47(4):633–47.
pubmed: 22841485
pmcid: 3428428
doi: 10.1016/j.molcel.2012.06.019
Spradling A, Orr-Weaver T. Regulation of DNA replication during Drosophila development. Annu Rev Genet. 1987;21:373–403.
pubmed: 3327470
doi: 10.1146/annurev.ge.21.120187.002105
Foe VE. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development. 1989;107(1):1–22.
pubmed: 2516798
doi: 10.1242/dev.107.1.1
Duronio RJ. Developing S-phase control. Genes Dev. 2012;26(8):746–50.
pubmed: 22508722
pmcid: 3337449
doi: 10.1101/gad.191171.112
Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun. 2011;2:154.
pubmed: 21224845
doi: 10.1038/ncomms1155
Turrero Garcia M, Chang Y, Arai Y, Huttner WB. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex. J Comp Neurol. 2016;524(3):456–70.
pubmed: 25963823
doi: 10.1002/cne.23801
Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA. 2013;110(11):E1045–54.
pubmed: 23431204
pmcid: 3600494
doi: 10.1073/pnas.1219563110
Kornack DR, Rakic P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA. 1998;95(3):1242–6.
pubmed: 9448316
pmcid: 18732
doi: 10.1073/pnas.95.3.1242
Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462(7273):595–601.
pubmed: 19898493
pmcid: 2789972
doi: 10.1038/nature08592
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic reprogramming from a privileged somatic cell state. Cell. 2014;156(4):649–62.
pubmed: 24486105
pmcid: 4318260
doi: 10.1016/j.cell.2014.01.020