Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
29 06 2022
29 06 2022
Historique:
received:
12
11
2021
accepted:
09
06
2022
entrez:
29
6
2022
pubmed:
30
6
2022
medline:
2
7
2022
Statut:
epublish
Résumé
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Identifiants
pubmed: 35768404
doi: 10.1038/s41467-022-31279-3
pii: 10.1038/s41467-022-31279-3
pmc: PMC9243111
doi:
Substances chimiques
Bacterial Proteins
0
Propylene Glycol
6DC9Q167V3
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3746Subventions
Organisme : NIGMS NIH HHS
ID : P41 GM103311
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008449
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F. & Sutter, M. Bacterial microcompartments. Nat. Rev. Microbiol. 16, 277–290 (2018).
pubmed: 29503457
pmcid: 6022854
doi: 10.1038/nrmicro.2018.10
Kennedy, N. W., Mills, C. E., Nichols, T. M., Abrahamson, C. H. & Tullman-Ercek, D. Bacterial microcompartments: tiny organelles with big potential. Curr. Opin. Microbiol. 63, 36–42 (2021).
pubmed: 34126434
doi: 10.1016/j.mib.2021.05.010
Axen, S. D., Erbilgin, O. & Kerfeld, C. A. A taxonomy of bacterial microcompartment Loci Constructed by a Novel Scoring Method. PLoS Computational Biol. 10, e1003898 (2014).
doi: 10.1371/journal.pcbi.1003898
Sutter, M., Melnicki, M. R., Schulz, F., Woyke, T. & Kerfeld, C. A. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat. Commun. 12, 3809 (2021).
pubmed: 34155212
pmcid: 8217296
doi: 10.1038/s41467-021-24126-4
Kaplan, A. & Reinhold, L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev. Plant Physiol. Plant Mol. Biol. 50, 539–570 (1999).
pubmed: 15012219
doi: 10.1146/annurev.arplant.50.1.539
Espie, G. S. & Kimber, M. S. Carboxysomes: cyanobacterial RubisCO comes in small packages. Photosynth Res. 109, 7–20 (2011).
pubmed: 21556873
doi: 10.1007/s11120-011-9656-y
Stewart, K. L., Stewart, A. M. & Bobik, T. A. Prokaryotic organelles: bacterial microcompartments in E. coli and Salmonella. EcoSal Plus 9 (2020).
Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. Diverse bacterial microcompartment organelles. Microbiol. Mol. Biol. Rev. 78, 438–468 (2014).
pubmed: 25184561
pmcid: 4187681
doi: 10.1128/MMBR.00009-14
Prentice, M. B. Bacterial microcompartments and their role in pathogenicity. Curr. Opin. Microbiol. 63, 19–28 (2021).
pubmed: 34107380
doi: 10.1016/j.mib.2021.05.009
Zeng, Z., Smid, E. J., Boeren, S., Notebaart, R. A. & Abee, T. Bacterial microcompartment-dependent 1,2-Propanediol utilization stimulates anaerobic growth of Listeria monocytogenes EGDe. Front. Microbiol. 10, 2660 (2019).
pubmed: 31803170
pmcid: 6873790
doi: 10.3389/fmicb.2019.02660
Jakobson, C. M., Tullman-Ercek, D. & Mangan, N. M. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory. Sci. Rep. 8, 8196 (2018).
pubmed: 29844460
pmcid: 5974357
doi: 10.1038/s41598-018-26399-0
Lundin, A. P. et al. Genetic characterization of a glycyl radical microcompartment used for 1,2-propanediol fermentation by uropathogenic escherichia coli CFT073. J. Bacteriol. 202 (2020).
Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A bacterial microcompartment is used for choline fermentation by escherichia coli 536. J. Bacteriol. 200 (2018).
Zarzycki, J., Sutter, M., Cortina, N. S., Erb, T. J. & Kerfeld, C. A. In vitro characterization and concerted function of three core enzymes of a glycyl radical enzyme - Associated Bacterial Microcompartment. Sci. Rep. 7, 42757 (2017).
pubmed: 28202954
pmcid: 5311937
doi: 10.1038/srep42757
Sutter, M., Greber, B., Aussignargues, C. & Kerfeld, C. A. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science 356, 1293–1297 (2017).
pubmed: 28642439
pmcid: 5873307
doi: 10.1126/science.aan3289
Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).
pubmed: 24014476
doi: 10.1002/cssc.201300398
Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. WIREs Nanomed. Nanobiotechnology 8, 255–270 (2016).
doi: 10.1002/wnan.1362
Bobik, T. A., Havemann, G. D., Busch, R. J., Williams, D. S. & Aldrich, H. C. The propanediol utilization (pdu) operon of Salmonella enterica serovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B-12-dependent 1,2-propanediol degradation. J. Bacteriol. 181, 5967–5975 (1999).
pubmed: 10498708
pmcid: 103623
doi: 10.1128/JB.181.19.5967-5975.1999
Sampson, E. M. & Bobik, T. A. Microcompartments for B12-Dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J. Bacteriol. 190, 2966–2971 (2008).
pubmed: 18296526
pmcid: 2293232
doi: 10.1128/JB.01925-07
Kennedy, N. W. et al. Apparent size and morphology of bacterial microcompartments varies with technique. PLOS ONE 15, e0226395 (2020).
pubmed: 32150579
pmcid: 7062276
doi: 10.1371/journal.pone.0226395
Parsons, J. B. et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol. Cell 38, 305–315 (2010).
pubmed: 20417607
doi: 10.1016/j.molcel.2010.04.008
Cheng, S., Sinha, S., Fan, C., Liu, Y. & Bobik, T. A. Genetic analysis of the protein shell of the microcompartments involved in coenzyme b12-dependent 1,2-propanediol degradation by Salmonella. J. Bacteriol. 193, 1385–1392 (2011).
pubmed: 21239588
pmcid: 3067621
doi: 10.1128/JB.01473-10
Kennedy, N. W., Ikonomova, S. P., Slininger Lee, M., Raeder, H. W. & Tullman-Ercek, D. Self-assembling shell proteins PduA and PduJ have essential and redundant roles in bacterial microcompartment assembly. J. Mol. Biol. 433, 166721 (2021).
pubmed: 33227310
doi: 10.1016/j.jmb.2020.11.020
Tanaka, S., Sawaya, M. R. & Yeates, T. O. Structure and mechanisms of a protein-based organelle in escherichia coli. Science 327, 81–84 (2010).
pubmed: 20044574
doi: 10.1126/science.1179513
Crowley, C. S. et al. Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. J. Biol. Chem. 285, 37838–37846 (2010).
pubmed: 20870711
pmcid: 2988387
doi: 10.1074/jbc.M110.160580
Pang, A., Warren, M. J. & Pickersgill, R. W. Structure of PduT, a trimeric bacterial microcompartment protein with a 4Fe–4S cluster-binding site. Acta Crystallogr. Sect. D. Biol. Crystallogr. 67, 91–96 (2011).
doi: 10.1107/S0907444910050201
Crowley, C. S., Sawaya, M. R., Bobik, T. A. & Yeates, T. O. Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Struct. (Lond., Engl.: 1993) 16, 1324–1332 (2008).
doi: 10.1016/j.str.2008.05.013
Wheatley, N. M., Gidaniyan, S. D., Liu, Y., Cascio, D. & Yeates, T. O. Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein Sci. 22, 660–665 (2013).
pubmed: 23456886
pmcid: 3649267
doi: 10.1002/pro.2246
Kerfeld, C. A. et al. Protein structures forming the shell of primitive bacterial organelles. Science 309, 936–938 (2005).
pubmed: 16081736
doi: 10.1126/science.1113397
Sutter, M., Wilson, S. C., Deutsch, S. & Kerfeld, C. A. Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. Photosynth Res. 118, 9–16 (2013).
pubmed: 23949415
doi: 10.1007/s11120-013-9909-z
Mallette, E. & Kimber, M. S. A complete structural inventory of the mycobacterial microcompartment shell proteins constrains models of global architecture and transport. J. Biol. Chem. 292, 1197–1210 (2017).
pubmed: 27927988
doi: 10.1074/jbc.M116.754093
Keeling, T. J., Samborska, B., Demers, R. W. & Kimber, M. S. Interactions and structural variability of β-carboxysomal shell protein CcmL. Photosynth Res. 121, 125–133 (2014).
pubmed: 24504539
doi: 10.1007/s11120-014-9973-z
McFarland, A. G. et al. Density-based binning of gene clusters to infer function or evolutionary history using GeneGrouper. Bioinformatics https://doi.org/10.1093/bioinformatics/btab752 (2021).
Cameron, J. C., Wilson, S. C., Bernstein, S. L. & Kerfeld, C. A. Biogenesis of a bacterial organelle: The Carboxysome Assembly Pathway. Cell 155, 1131–1140 (2013).
pubmed: 24267892
doi: 10.1016/j.cell.2013.10.044
Cai, F. et al. The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLOS ONE 4, e7521 (2009).
pubmed: 19844578
pmcid: 2760150
doi: 10.1371/journal.pone.0007521
Jakobson, C. M., Tullman-Ercek, D., Slininger, M. F. & Mangan, N. M. A systems-level model reveals that 1, 2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLoS Computational Biol. 13, e1005525 (2017).
doi: 10.1371/journal.pcbi.1005525
Fan, C. & Bobik, T. A. The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu Microcompartment. J. Bacteriol. 193, 5623–5628 (2011).
pubmed: 21821773
pmcid: 3187188
doi: 10.1128/JB.05661-11
Kim, E. Y. & Tullman-Ercek, D. A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments. Biotechnol. J. 9, 348–354 (2014).
pubmed: 24323373
doi: 10.1002/biot.201300391
Nichols, T. M., Kennedy, N. W. & Tullman-Ercek, D. Cargo encapsulation in bacterial microcompartments: Methods and analysis. Methods Enzymol. 617, 155–186 (2019).
pubmed: 30784401
pmcid: 6590060
doi: 10.1016/bs.mie.2018.12.009
Nichols, T. M., Kennedy, N. W. & Tullman-Ercek, D. A genomic integration platform for heterologous cargo encapsulation in 1,2-propanediol utilization bacterial microcompartments. Biochemical Eng. J. 156, 107496 (2020).
doi: 10.1016/j.bej.2020.107496
Uddin, I., Frank, S., Warren, M. J. & Pickersgill, R. W. A generic self-assembly process in microcompartments and synthetic protein nanotubes. Small 14, 1704020 (2018).
doi: 10.1002/smll.201704020
Greber, B. J., Sutter, M. & Kerfeld, C. A. The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure 27, 749–763.e4 (2019).
pubmed: 30833088
pmcid: 6506404
doi: 10.1016/j.str.2019.01.017
Yang, M. et al. Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Nat. Commun. 11, 1976 (2020).
pubmed: 32332738
pmcid: 7181861
doi: 10.1038/s41467-020-15888-4
Li, Y. et al. Computational and experimental approaches to controlling bacterial microcompartment assembly. ACS Cent. Sci. 7, 658–670 (2021).
pubmed: 34056096
pmcid: 8155464
doi: 10.1021/acscentsci.0c01699
Chen, P., Andersson, D. I. & Roth, J. R. The control region of the pdu/cob regulon in Salmonella typhimurium. J. Bacteriol. 176, 5474–5482 (1994).
pubmed: 8071226
pmcid: 196736
doi: 10.1128/jb.176.17.5474-5482.1994
Kim, E. Y., Jakobson, C. M. & Tullman-Ercek, D. Engineering transcriptional regulation to control pdu microcompartment formation. PLOS ONE 9, e113814 (2014).
pubmed: 25427074
pmcid: 4245221
doi: 10.1371/journal.pone.0113814
Rondon, M. R. & Escalante-Semerena, J. The poc locus is required for 1, 2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J. Bacteriol. 174, 2267–2272 (1992).
pubmed: 1313000
pmcid: 205847
doi: 10.1128/jb.174.7.2267-2272.1992
Chowdhury, C. et al. Selective molecular transport through the protein shell of a bacterial microcompartment organelle. PNAS 112, 2990–2995 (2015).
pubmed: 25713376
pmcid: 4364225
doi: 10.1073/pnas.1423672112
Slininger Lee, M. F., Jakobson, C. M. & Tullman-Ercek, D. Evidence for improved encapsulated pathway behavior in a bacterial microcompartment through shell protein engineering. ACS Synth. Biol. 6, 1880–1891 (2017).
pubmed: 28585808
doi: 10.1021/acssynbio.7b00042
Tsang, A. W., Horswill, A. R. & Escalante-Semerena, J. C. Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J. Bacteriol. 180, 6511–6518 (1998).
pubmed: 9851993
pmcid: 107752
doi: 10.1128/JB.180.24.6511-6518.1998
Huber, I. et al. Construction of recombinant pdu metabolosome shells for small molecule production in Corynebacterium glutamicum. ACS Synth. Biol. 6, 2145–2156 (2017).
pubmed: 28826205
doi: 10.1021/acssynbio.7b00167
Jakobson, C. M., Lee, M. F. S. & Tullman-Ercek, D. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment. Protein Sci. 26, 1086–1092 (2017).
pubmed: 28241402
pmcid: 5405430
doi: 10.1002/pro.3144
Hagen, A. R. et al. In vitro assembly of diverse bacterial microcompartment shell architectures. Nano Lett. 18, 7030–7037 (2018).
pubmed: 30346795
pmcid: 6309364
doi: 10.1021/acs.nanolett.8b02991
Hagen, A., Sutter, M., Sloan, N. & Kerfeld, C. A. Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nat. Commun. 9, 1–10 (2018).
doi: 10.1038/s41467-018-05162-z
Ferlez, B., Sutter, M. & Kerfeld, C. A. A designed bacterial microcompartment shell with tunable composition and precision cargo loading. Metab. Eng. 54, 286–291 (2019).
pubmed: 31075444
pmcid: 6884132
doi: 10.1016/j.ymben.2019.04.011
Lee, M. J. et al. De novo targeting to the cytoplasmic and luminal side of bacterial microcompartments. Nat. Commun. 9, 1–11 (2018).
doi: 10.1038/s41467-018-05922-x
Sutter, M., McGuire, S., Ferlez, B. & Kerfeld, C. A. Structural characterization of a synthetic tandem-domain bacterial microcompartment shell protein capable of forming Icosahedral Shell Assemblies. ACS Synth. Biol. 8, 668–674 (2019).
pubmed: 30901520
pmcid: 6884138
doi: 10.1021/acssynbio.9b00011
Lassila, J. K., Bernstein, S. L., Kinney, J. N., Axen, S. D. & Kerfeld, C. A. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function. J. Mol. Biol. 426, 2217–2228 (2014).
pubmed: 24631000
doi: 10.1016/j.jmb.2014.02.025
Gan, Q., Lehman, B. P., Bobik, T. A. & Fan, C. Expanding the genetic code of Salmonella with non-canonical amino acids. Sci. Rep. 6, 39920 (2016).
pubmed: 28008993
pmcid: 5180212
doi: 10.1038/srep39920
Chen, H., Wilson, J., Ottinger, S., Gan, Q. & Fan, C. Introducing noncanonical amino acids for studying and engineering bacterial microcompartments. Curr. Opin. Microbiol. 61, 67–72 (2021).
pubmed: 33813159
pmcid: 8169543
doi: 10.1016/j.mib.2021.03.004
Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).
pubmed: 19436741
pmcid: 2677662
doi: 10.1371/journal.pone.0005553
Hartman, E. C. et al. Quantitative characterization of all single amino acid variants of a viral capsid-based drug delivery vehicle. Nat. Commun. 9, 1385 (2018).
pubmed: 29643335
pmcid: 5895741
doi: 10.1038/s41467-018-03783-y
Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. 108, 7896–7901 (2011).
pubmed: 21464309
pmcid: 3093508
doi: 10.1073/pnas.1016024108
Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).
pubmed: 16750601
doi: 10.1016/j.gene.2006.04.018
Thomason, L. C., Sawitzke, J. A., Li, X., Costantino, N. & Court, D. L. Recombineering: genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 106, 1.16.1–1.16.39 (2014).
doi: 10.1002/0471142727.mb0116s106
Sinha, S., Cheng, S., Fan, C. & Bobik, T. A. The PduM protein is a structural component of the microcompartments involved in coenzyme B12-Dependent 1,2-Propanediol Degradation by Salmonella enterica. J. Bacteriol. 194, 1912–1918 (2012).
pubmed: 22343294
pmcid: 3318458
doi: 10.1128/JB.06529-11
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth 9, 671–675 (2012).
doi: 10.1038/nmeth.2089
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
pubmed: 25950237
pmcid: 5298202
doi: 10.1038/nprot.2015.053
Pettersen, E. F. et al. UCSF Chimera−a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C. & Ferrin, T. E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinforma. 7, 339 (2006).
doi: 10.1186/1471-2105-7-339
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
pubmed: 32015543
pmcid: 7056644
doi: 10.1038/s41592-019-0686-2
Archer, A. G., Mills, C. E., Shirman, S., Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. https://github.com/cemills/MCP-vs-MT , https://doi.org/10.5281/zenodo.6609067 (2022).