Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest.
body size
community assembly
metabarcoding
multitrophic soil microbiota
plant functional traits
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
18
06
2022
received:
15
02
2022
accepted:
23
06
2022
medline:
27
11
2023
pubmed:
1
7
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.
Substances chimiques
Soil
0
Phosphorus
27YLU75U4W
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6294-6303Subventions
Organisme : National Natural Science Foundation of China
ID : 41877064
Organisme : National Natural Science Foundation of China
ID : 42061144005
Organisme : Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences
ID : 151C53KYSB20200019
Organisme : The Joint Fund of the National Natural Science Foundation of China-Yunnan Province
ID : U1902203
Organisme : The Strategic Priority Research Program of Chinese Academy of Sciences
ID : XDB31000000
Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Andrews, J. H., & Harris, R. F. (1986). r- and K-selection and microbial ecology. In K. C. Marshall (Ed.), Advances in microbial ecology (Vol. 9). Springer. https://doi.org/10.1007/978-1-4757-0611-6_3
Bahram, M., Kohout, P., Anslan, S., Harend, H., Abarenkov, K., & Tedersoo, L. (2016). Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. The International Society for Microbial Ecology Journal, 10(4), 885-896. https://doi.org/10.1038/ismej.2015.164
Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64(2), 269-285. https://doi.org/10.1016/j.ecolecon.2007.03.004
Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153(1), 51-68. https://doi.org/10.1016/S0304-3800(01)00501-4
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Brenning, A. (2008). Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. In J. Boehner, T. Blaschke, & L. Montanarella (Eds.), SAGA - Seconds Out (= Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, vol. 19) (pp. 23-32).
Briones, M. J. I. (2014). Soil fauna and soil functions: a jigsaw puzzle. Frontiers in Environmental Science., 2, 7. https://doi.org/10.3389/fenvs.2014.00007
Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L., & Thuiller, W. (2020). From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices? Journal of Biogeography, 47, 193-206. https://doi.org/10.1111/jbi.13681
Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., & Scheu, S. (2013). Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology and Biochemistry, 62, 36-45. https://doi.org/10.1016/j.soilbio.2013.02.020
Corlett, R. T. (2014). The ecology of tropical East Asia (3rd ed.). Oxford University Press. https://doi.org/10.1093/oso/9780198817017.001.0001
Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., Ter Steege, H., Morgan, H. D., Van Der Heijden, M. G. A., Pausas, J. G., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380. https://doi.org/10.1071/BT02124
Delgado-Baquerizo, M., Fry, E. L., Eldridge, D. J., de Vries, F. T., Manning, P., Hamonts, K., Kattge, J., Boenisch, G., Singh, B. K., & Bardgett, R. D. (2018). Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 219(2), 574-587. https://doi.org/10.1111/nph.15161
Diaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., & Gorne, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171. https://doi.org/10.1038/nature16489
Dolédec, S., Chessel, D., & Gimaret-Carpentier, C. (2000). Niche separation in community analysis: A new method. Ecology, 81, 2914-2927. https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
Farjalla, V. F., Srivastava, D. S., Marino, N. A. C., Azevedo, F. D., Dib, V., Lopes, P. M., & Esteves, F. A. (2012). Ecological determinism increases with organism size. Ecology, 93(7), 1752-1759. https://doi.org/10.1890/11-1144.1
Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35(6), 837-843. https://doi.org/10.1016/s0038-0717(03)00123-8
Franco, A. L. C., Sobral, B. W., Silva, A. L. C., & Wall, D. H. (2019). Amazonian deforestation and soil biodiversity. Conservation Biology, 33(3), 590-600. https://doi.org/10.1111/cobi.13234
Geisen, S., Wall, D. H., & van der Putten, W. H. (2019). Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology, 29(19), R1036-R1044. https://doi.org/10.1016/j.cub.2019.08.007
Goberna, M., Navarro-Cano, J. A., Valiente-Banuet, A., Garcia, C., & Verdu, M. (2014). Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecology Letters, 17(10), 1191-1201. https://doi.org/10.1111/ele.12341
Gross, N., Bagousse-Pinguet, Y. L., Liancourt, P., Berdugo, M., Gotelli, N. J., & Maestre, F. T. (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology and Evolution, 1(5), 132. https://doi.org/10.1038/s41559-017-0132
Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. A. R. (2007). Phylogenetic measures of biodiversity. The American Naturalist, 169(3), E68-E83. https://doi.org/10.1086/511334
Huang, W., Liu, J., Wang, Y. P., Zhou, G., Han, T., & Li, Y. (2012). Increasing phosphorus limitation along three successional forests in southern China. Plant and Soil, 364(1-2), 181-191. https://doi.org/10.1007/s11104-012-1355-8
Jiao, S., Zhang, B., Zhang, G., Chen, W., & Wei, G. (2021). Stochastic community assembly decreases soil fungal richness in arid ecosystems. Molecular Ecology, 30(17), 4338-4348. https://doi.org/10.1111/mec.16047
Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9), 1363-1371. https://doi.org/10.1016/j.soilbio.2010.04.003
Lan, G. Y., Hu, Y. H., Cao, M., Zhu, H., Wang, H., Zhou, S. S., Deng, X. B., Cui, J. Y., Huang, J. G., Liu, L. Y., Xu, H. L., Song, J. P., & He, Y. C. (2008). Establishment of Xishuangbanna tropical forest dynamics plot: Species compositions and spatial distribution patterns. Chinese Journal Plant Ecology, 32(2), 287-298. https://doi.org/10.3773/j.issn.1005-264x.2008.02.006
Leff, J. W., Bardgett, R. D., Wilkinson, A., Jackson, B. G., Pritchard, W. J., De Long, J. R., & Fierer, N. (2018). Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The International Society for Microbial Ecology Journal, 12(7), 1794-1805. https://doi.org/10.1038/s41396-018-0089-x
Legendre, P., & Legendre, L. (2012). Numerical Ecology (3rd ed.). Elsevier Science. https://doi.org/10.2307/1938982
Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I. F., & He, F. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90(3), 663-674. https://doi.org/10.1890/07-1880.1
Lindo, Z., Whiteley, J., & Gonzalez, A. (2012). Traits explain community disassembly and trophic contraction following experimental environmental change. Global Change Biology, 18, 2448-2457. https://doi.org/10.1111/j.1365-2486.2012.02725.x
Luan, L., Jiang, Y., Cheng, M., Dini-Andreote, F., Sui, Y., Xu, Q., & Sun, B. (2020). Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11(1), 6406. https://doi.org/10.1038/s41467-020-20271-4
Moreau, D., Pivato, B., Bru, D., Busset, H., Deau, F., Faivre, C., & Mougel, C. (2015). Plant traits related to nitrogen uptake influence plant-microbe competition. New Phytologist, 96(8), 2300-2310. https://doi.org/10.1890/14-1761.1
Moroenyane, I., Dong, K., Singh, D., Chimphango, S. B. M., & Adams, J. M. (2016). Deterministic processes dominate nematode community structure in the Fynbos Mediterranean heathland of South Africa. Evolutionary Ecology, 30(4), 685-701. https://doi.org/10.1007/s10682-016-9837-4
Ni, Y., Yang, T., Ma, Y., Zhang, K., Soltis, P. S., Soltis, D. E., & Waring, B. G. (2021). Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Global Ecology and Biogeography., 30(11), 2164-2177. https://doi.org/10.1111/geb.13373
Pirk, G. I., & Farji Brener, A. G. (2013). Can the nutrient-rich soil patches created by leaf-cutting ants favor plant compensation for foliar damage? A test of the compensatory continuum hypothesis. Plant Ecology, 214(8), 1059-1070. https://doi.org/10.1007/s11258-013-0231-9
Porazinska, D. L., Giblin-Davis, R. M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker, A. E., Sung, W., & Thomas, W. K. (2009). Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9(6), 1439-1450. https://doi.org/10.1111/j.1755-0998.2009.02611.x
Porazinska, D. L., Sung, W., Giblin, D. R. M., & Thomas, W. K. (2010). Reproducibility of read numbers in high-throughput sequencing analysis of nematode community composition and structure. Molecular Ecology Resources, 10(4), 666-676. https://doi.org/10.1111/j.1755-0998.2009.02819.x
Richard, D. B. (2017). Plant trait-based approaches for interrogating belowground function. Biology and environment: Proceedings of the Royal Irish Academy, 117B(1), 1. https://doi.org/10.3318/bioe.2017.03
Soininen, J., Korhonen, J. J., & Luoto, M. (2013). Stochastic species distributions are driven by organism size. Ecology, 94(3), 660-670. https://doi.org/10.1890/12-0777.1
Swenson, N. G. (2014). Phylogenetic and functional beta diversity. In Functional and phylogenetic ecology in R (pp. 85-108). Springer New York. https://doi.org/10.1007/978-1-4614-9542-0_5
Thion, C. E., Poirel, J. D., Cornulier, T., De Vries, F. T., Bardgett, R. D., & Prosser, J. I. (2016). Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiology Ecology, 92(7). https://doi.org/10.1093/femsec/fiw091
Tripathi, B. M., Stegen, J. C., Kim, M., Dong, K., Adams, J. M., & Lee, Y. K. (2018). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The International Society for Microbial Ecology Journal, 12(4), 1072-1083. https://doi.org/10.1038/s41396-018-0082-4
Tucker, C. M., Shoemaker, L. G., Davies, K. F., Nemergut, D. R., & Melbourne, B. A. (2016). Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos, 125(6), 778-789. https://doi.org/10.1111/oik.02803
Viglierchio, D. R., & Schmitt, R. V. (1983). On the methodology of nematode extraction from field samples: Baermann funnel modifications. Journal of Nematology, 15(3), 438-444. https://doi.org/10.2307/1380543
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5266-5270. https://doi.org/10.1073/pnas.1320054111
Wall, D., Diana, H. W., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, T. H., Ritz, K., Six, J., Strong, D. R., & van der Putten, W. H. (2013). Ecosystem services provided by soil biota. In Soil Ecology and Ecosystem Services (pp. 44-55). Oxford University Presses. https://doi.org/10.1093/acprof:oso/9780199575923.001.0001
Wu, W., Lu, H. P., Sastri, A., Yeh, Y. C., Gong, G. C., Chou, W. C., & Hsieh, C. H. (2018). Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. The International Society for Microbial Ecology Journal, 12(2), 485-494. https://doi.org/10.1038/ismej.2017.183
Xia, S. W., Chen, J., Schaefer, D., & Goodale, U. M. (2016). Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest. Plant and Soil, 404(1-2), 385-398. https://doi.org/10.1007/s11104-016-2854-9
Xu, W., Ci, X., Song, C., He, T., Zhang, W., Li, Q., & Li, J. (2016). Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest. Ecology and Evolution, 6, 8719-8726. https://doi.org/10.1002/ece3.2529
Yang, J., Swenson, N. G., Zhang, G., Ci, X., Cao, M., Sha, L., & Lin, L. (2015). Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Scientific Reports, 5(5), 12731. https://doi.org/10.1038/srep12731
Yeates, G. W., Bongers, T., Goede, R. G., De Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology, 25(3), 315-331. https://doi.org/10.1006/jipa.1993.1100
Zhu, H. (1997). Ecological and biogeographical studies on the tropical rain forest of South Yunnan, SW China with a special reference to its relation with rain forests of tropical Asia. Journal of Biogeography, 24, 647-662. https://doi.org/10.1111/j.1365-2699.1997.tb00075.x
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., De Barba, M., Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli, L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., … Taberlet, P. (2019). DNA metabarcoding-need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 28, 1857-1862. https://doi.org/10.1111/mec.15060
Zinger, L., Taberlet, P., Schimann, H., Bonin, A., Boyer, F., De Barba, M., & Chave, J. (2019). Body size determines soil community assembly in a tropical forest. Molecular Ecology, 28(3), 528-543. https://doi.org/10.1111/mec.14919