Advanced mid-infrared lightsources above and beyond lasers and their analytical utility.
Infrared diagnostics
Infrared sensors
Light emitting diode
MIR
MIR-LED
Mid-infrared
Thermal emitter
Journal
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
ISSN: 1348-2246
Titre abrégé: Anal Sci
Pays: Switzerland
ID NLM: 8511078
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
14
11
2021
accepted:
11
05
2022
pubmed:
4
7
2022
medline:
31
8
2022
entrez:
3
7
2022
Statut:
ppublish
Résumé
In the mid-infrared (MIR) spectral range, a series of applications have successfully been shown in the fields of sensing, security and defense, energy conservation, and communications. In particular, rapid and recent developments in MIR light sources have significantly increased the interest in developing MIR optical systems, sensors, and diagnostics especially for chem/bio detection schemes and molecular analytical application scenarios. In addition to the advancements in optoelectronic light sources, and especially quantum and interband cascade lasers (QCLs, ICLs) largely driving the increasing interest in the MIR regime, also thermal emitters and light emitting diodes (LEDs) offer opportunities to alternatively fill current gaps in spectral coverage specifically with analytical applications and chem/bio sensing/diagnostics in the focus. As MIR laser technology has been broadly covered in a variety of articles, the present review aims at summarizing recent developments in MIR non-laser light sources highlighting their analytical utility in the MIR wavelength range.
Identifiants
pubmed: 35780446
doi: 10.1007/s44211-022-00133-3
pii: 10.1007/s44211-022-00133-3
pmc: PMC9420685
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1125-1139Informations de copyright
© 2022. The Author(s).
Références
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5309-14
pubmed: 23440220
Nat Commun. 2015 May 07;6:7032
pubmed: 25948173
Nanoscale. 2018 Mar 1;10(9):4415-4420
pubmed: 29451573
Nat Nanotechnol. 2012 May 06;7(6):369-73
pubmed: 22562037
Opt Lett. 2017 Nov 1;42(21):4537-4540
pubmed: 29088207
Nanomaterials (Basel). 2020 Jul 24;10(8):
pubmed: 32722016
Light Sci Appl. 2017 Jan 27;6(1):e16194
pubmed: 30167194
Chem Commun (Camb). 2017 May 11;53(39):5457-5460
pubmed: 28466936
Sci Rep. 2015 Apr 23;5:9929
pubmed: 25905685
Science. 1994 Apr 22;264(5158):553-6
pubmed: 17732739
Adv Mater. 2016 Feb 3;28(5):871-5
pubmed: 26619382
ACS Sens. 2019 Oct 25;4(10):2746-2753
pubmed: 31524375
Sci Rep. 2017 Nov 7;7(1):14741
pubmed: 29116136
Opt Lett. 2016 Oct 1;41(19):4453-4456
pubmed: 27749853
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016609
pubmed: 16907206
Opt Express. 2013 Apr 8;21(7):9113-22
pubmed: 23572000
Sci Rep. 2016 Oct 05;6:34746
pubmed: 27703223
Sensors (Basel). 2018 Dec 09;18(12):
pubmed: 30544879
Opt Express. 2007 Oct 29;15(22):14673-8
pubmed: 19550748
Sensors (Basel). 2013 May 29;13(6):7079-103
pubmed: 23760090
Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2119-23
pubmed: 24453193
Opt Express. 2020 Aug 3;28(16):23338-23353
pubmed: 32752332
Anal Chem. 2016 Mar 1;88(5):2558-62
pubmed: 26845392
Nat Nanotechnol. 2019 Jan;14(1):72-79
pubmed: 30510279
Nanotechnology. 2015 Jun 12;26(23):234002
pubmed: 25990113
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53206-53214
pubmed: 33172255
Nature. 2002 May 9;417(6885):156-9
pubmed: 12000955
Nature. 2002 May 2;417(6884):52-5
pubmed: 11986662
Trends Analyt Chem. 2015 Jan 1;64:100-108
pubmed: 25598563