Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery.


Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
Nov 2022
Historique:
accepted: 26 06 2022
pubmed: 6 7 2022
medline: 26 10 2022
entrez: 5 7 2022
Statut: ppublish

Résumé

Acute ischemic stroke (AIS) is characterized by a sudden blockage of one of the main arteries supplying blood to the brain, leading to insufficient oxygen and nutrients for brain cells to function properly. Unfortunately, metabolic alterations in the biofluids with AIS are still not well understood. In this study, we performed high-throughput target metabolic analysis on 44 serum samples, including 22 from AIS patients and 22 from healthy controls. Multiple-reaction monitoring analysis of 180 common metabolites revealed a total of 29 metabolites that changed significantly (VIP > 1, p < 0.05). Multivariate statistical analysis unraveled a striking separation between AIS patients and healthy controls. Comparing the AIS group with the control group, the contents of argininosuccinic acid, beta-D-glucosamine, glycerophosphocholine, L-abrine, and L-pipecolic acid were remarkably downregulated in AIS patients. Twenty-nine out of 112 detected metabolites enriched in disturbed metabolic pathways, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, lysine degradation, phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways. Collectively, these results will provide a sensitive, feasible diagnostic prospect for AIS patients.

Identifiants

pubmed: 35789984
doi: 10.1007/s12010-022-04024-1
pii: 10.1007/s12010-022-04024-1
doi:

Substances chimiques

Tryptophan 8DUH1N11BX
Argininosuccinic Acid 2387-71-5
Lysine K3Z4F929H6
Biomarkers 0
Tyrosine 42HK56048U
Phenylalanine 47E5O17Y3R
Glucosamine N08U5BOQ1K
Oxygen S88TT14065
Glycerophospholipids 0
RNA, Transfer 9014-25-9

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5443-5455

Subventions

Organisme : Fujian Health Talent Training Project
ID : 2019-2-62
Organisme : Xiamen Science and Technology Huimin Project
ID : 3502Z20184006
Organisme : Xiamen Medical and Health Technology Project
ID : 3502Z20194033
Organisme : Xiamen Medical and Health Technology Project
ID : 3502Z20194028

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation, 145, e153–e639.
pubmed: 35078371
Collaborators, G. B. D. S. (2021). Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology, 20, 795–820.
Jiang, B., Wang, W. Z., Chen, H., Hong, Z., Yang, Q. D., Wu, S. P., Du, X. L., & Bao, Q. J. (2006). Incidence and trends of stroke and its subtypes in China: Results from three large cities. Stroke, 37, 63–68.
pubmed: 16306469
Krishnamurthi, R. V., Feigin, V. L., Forouzanfar, M. H., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L. M., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., Naghavi, M., … Global Burden of Diseases, I. R. F. S. and Group, G. B. D. S. E. (2013). Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob Health, 1, e259-281.
pubmed: 25104492 pmcid: 4181351
Andersen, K. K., Olsen, T. S., Dehlendorff, C., & Kammersgaard, L. P. (2009). Hemorrhagic and ischemic strokes compared: Stroke severity, mortality, and risk factors. Stroke, 40, 2068–2072.
pubmed: 19359645
Salvadori, E., Papi, G., Insalata, G., Rinnoci, V., Donnini, I., Martini, M., Falsini, C., Hakiki, B., Romoli, A., Barbato, C., Polcaro, P., Casamorata, F., Macchi, C., Cecchi, F. and Poggesi, A. (2020) Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital. Diagnostics (Basel), 11.
Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2019). Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 50, e344–e418.
pubmed: 31662037
Hurford, R., Sekhar, A., Hughes, T. A. T., & Muir, K. W. (2020). Diagnosis and management of acute ischaemic stroke. Practical Neurology, 20, 304–316.
pubmed: 32507747 pmcid: 7577107
Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Davalos, A., Guidetti, D., Larrue, V., Lees, K. R., Medeghri, Z., Machnig, T., Schneider, D., von Kummer, R., Wahlgren, N., Toni, D., & Investigators, E. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New England Journal of Medicine, 359, 1317–1329.
pubmed: 18815396
Jovin, T. G., Chamorro, A., Cobo, E., de Miquel, M. A., Molina, C. A., Rovira, A., San Roman, L., Serena, J., Abilleira, S., Ribo, M., Millan, M., Urra, X., Cardona, P., Lopez-Cancio, E., Tomasello, A., Castano, C., Blasco, J., Aja, L., Dorado, L., … Investigators, R. T. (2015). Thrombectomy within 8 hours after symptom onset in ischemic stroke. New England Journal of Medicine, 372, 2296–2306.
pubmed: 25882510
Latchaw, R. E., Alberts, M. J., Lev, M. H., Connors, J. J., Harbaugh, R. E., Higashida, R. T., Hobson, R., Kidwell, C. S., Koroshetz, W. J., Mathews, V., Villablanca, P., Warach, S., Walters, B., American Heart Association Council on Cardiovascular, R., Intervention, S. C. and the Interdisciplinary Council on Peripheral Vascular, D. (2009). Recommendations for imaging of acute ischemic stroke: A scientific statement from the American Heart Association. Stroke, 40, 3646–3678.
pubmed: 19797189
Boers, A. M. M., Sales Barros, R., Jansen, I. G. H., Berkhemer, O. A., Beenen, L. F. M., Menon, B. K., Dippel, D. W. J., van der Lugt, A., van Zwam, W. H., Roos, Y., van Oostenbrugge, R. J., Slump, C. H., Majoie, C., Marquering, H. A., investigators, M. C. (2018). Value of quantitative collateral scoring on CT angiography in patients with acute ischemic stroke. AJNR. American Journal of Neuroradiology, 39, 1074–1082.
pubmed: 29674417 pmcid: 7410629
Kim, Y., Lee, S., Abdelkhaleq, R., Lopez-Rivera, V., Navi, B., Kamel, H., Savitz, S. I., Czap, A. L., Grotta, J. C., McCullough, L. D., Krause, T. M., Giancardo, L., Vahidy, F. S., & Sheth, S. A. (2021). Utilization and availability of advanced imaging in patients with acute ischemic stroke. Circulation. Cardiovascular Quality and Outcomes, 14, e006989.
pubmed: 33757311
Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.
pubmed: 16921475 pmcid: 1904337
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.
pubmed: 16448051
Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J., & Siuzdak, G. (2012). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 30, 826–828.
pubmed: 22965049 pmcid: 3666346
Wang, D., Kong, J., Wu, J., Wang, X., & Lai, M. (2017). GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neuroscience Letters, 642, 7–13.
pubmed: 28111353
Yu, F., Li, X., Feng, X., Wei, M., Luo, Y., Zhao, T., Xiao, B., & Xia, J. (2021). Phenylacetylglutamine, a novel biomarker in acute ischemic stroke. Front Cardiovasc Med, 8, 798765.
pubmed: 35004911 pmcid: 8733610
Sidorov, E. V., Xu, C., Garcia-Ramiu, J., Blair, A., Ortiz-Garcia, J., Gordon, D., Chainakul, J., & Sanghera, D. K. (2022). Global metabolomic profiling reveals disrupted lipid and amino acid metabolism between the acute and chronic stages of ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 31, 106320.
pubmed: 35104745
Kimberly, W. T., Wang, Y., Pham, L., Furie, K. L., & Gerszten, R. E. (2013). Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke, 44, 1389–1395.
pubmed: 23520238
Choi, S. H., Arai, A. L., Mou, Y., Kang, B., Yen, C. C., Hallenbeck, J., & Silva, A. C. (2018). Neuroprotective effects of MAGL (monoacylglycerol lipase) inhibitors in experimental ischemic stroke. Stroke, 49, 718–726.
pubmed: 29440474 pmcid: 5829008
Geng, J., Zhang, Y., Li, S., Li, S., Wang, J., Wang, H., Aa, J., & Wang, G. (2019). Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. Journal of Proteome Research, 18, 57–68.
pubmed: 30362349
Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17, 451–459.
pubmed: 26979502 pmcid: 5729912
Hu, L., Liu, J., Zhang, W., Wang, T., Zhang, N., Lee, Y. H., & Lu, H. (2020). Functional metabolomics decipher biochemical functions and associated mechanisms underlie small-molecule metabolism. Mass Spectrometry Reviews, 39, 417–433.
pubmed: 31682024
Rinschen, M. M., Ivanisevic, J., Giera, M., & Siuzdak, G. (2019). Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology, 20, 353–367.
pubmed: 30814649 pmcid: 6613555
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50, D622–D631.
pubmed: 34986597
Wei, R., Li, G., & Seymour, A. B. (2010). High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Analytical Chemistry, 82, 5527–5533.
pubmed: 20524683
Zheng, F., Zhao, X., Zeng, Z., Wang, L., Lv, W., Wang, Q., & Xu, G. (2020). Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry. Nature Protocols, 15, 2519–2537.
pubmed: 32581297
Gaugler, S., Rykl, J., Wegner, I., von Daniken, T., Fingerhut, R., & Schlotterbeck, G. (2018). Extended and fully automated newborn screening method for mass spectrometry detection. Int J Neonatal Screen, 4, 2.
pubmed: 33072928
Cai, Z., Zhang, Q., Xia, Z., Zheng, S., Zeng, L., Han, L., Yan, J., Ke, P., Zhuang, J., Wu, X., & Huang, X. (2020). Determination of serum 25-hydroxyvitamin D status among population in southern China by a high accuracy LC-MS/MS method traced to reference measurement procedure. Nutrition & Metabolism (London), 17, 8.
Lin, L., Ding, Y., Wang, Y., Wang, Z., Yin, X., Yan, G., Zhang, L., Yang, P., & Shen, H. (2017). Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology, 66, 432–448.
pubmed: 28073184
Nemet, I., Saha, P. P., Gupta, N., Zhu, W., Romano, K. A., Skye, S. M., Cajka, T., Mohan, M. L., Li, L., Wu, Y., Funabashi, M., Ramer-Tait, A. E., Naga Prasad, S. V., Fiehn, O., Rey, F. E., Tang, W. H. W., Fischbach, M. A., DiDonato, J. A., & Hazen, S. L. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell, 180(862–877), e822.
Liu, L., Feng, R., Guo, F., Li, Y., Jiao, J., & Sun, C. (2015). Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Research and Clinical Practice, 108, 84–93.
pubmed: 25700627
Kim, S., Jang, W. J., Yu, H., Kim, J., Lee, S. K., Jeong, C. H. and Lee, S. (2020) Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis. Int J Mol Sci, 21.
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. E., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49, W388–W396.
pubmed: 34019663 pmcid: 8265181
Holthuis, J. C., & Menon, A. K. (2014). Lipid landscapes and pipelines in membrane homeostasis. Nature, 510, 48–57.
pubmed: 24899304
Fernandez-Murray, J. P., & McMaster, C. R. (2005). Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. Journal of Biological Chemistry, 280, 38290–38296.
pubmed: 16172116
Winrow, C. J., Hemming, M. L., Allen, D. M., Quistad, G. B., Casida, J. E., & Barlow, C. (2003). Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genetics, 33, 477–485.
pubmed: 12640454
Muhlig-Versen, M., da Cruz, A. B., Tschape, J. A., Moser, M., Buttner, R., Athenstaedt, K., Glynn, P., & Kretzschmar, D. (2005). Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. Journal of Neuroscience, 25, 2865–2873.
pubmed: 15772346
Pena, I. A., Marques, L. A., Laranjeira, A. B., Yunes, J. A., Eberlin, M. N., & Arruda, P. (2016). Simultaneous detection of lysine metabolites by a single LC-MS/MS method: Monitoring lysine degradation in mouse plasma. Springerplus, 5, 172.
pubmed: 27026869 pmcid: 4766172
Perez-Garcia, F., Brito, L. F., & Wendisch, V. F. (2019). Function of L-pipecolic acid as compatible solute in corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology, 10, 340.
pubmed: 30858843 pmcid: 6397837
Hallen, A., Jamie, J. F., & Cooper, A. J. (2013). Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids, 45, 1249–1272.
pubmed: 24043460
Posset, R., Opp, S., Struys, E. A., Volkl, A., Mohr, H., Hoffmann, G. F., Kolker, S., Sauer, S. W., & Okun, J. G. (2015). Understanding cerebral L-lysine metabolism: The role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. Journal of Inherited Metabolic Disease, 38, 265–272.
pubmed: 25214427
Gerhards, N., Neubauer, L., Tudzynski, P., & Li, S. M. (2014). Biosynthetic pathways of ergot alkaloids. Toxins (Basel), 6, 3281–3295.
Yu, X., Liu, Y., Xie, X., Zheng, X. D., & Li, S. M. (2012). Biochemical characterization of indole prenyltransferases: Filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. Journal of Biological Chemistry, 287, 1371–1380.
pubmed: 22123822
Herraiz, T., & Galisteo, J. (2004). Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radical Research, 38, 323–331.
pubmed: 15129740

Auteurs

Biao Qi (B)

Department of Neurosurgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China.

Yanyu Zhang (Y)

Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen, 361024, China.

Bing Xu (B)

Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China.

Yuhao Zhang (Y)

Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.

Guoqiang Fei (G)

Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.

Ling Lin (L)

Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999th Jinshan Road, Xiamen, 361000, China. linemail00@gmail.com.

Qiuping Li (Q)

Department of Neurosurgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, China. li.qiuping@zs-hospital.sh.cn.
Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180th Fenglin Road, Shanghai, 200032, China. li.qiuping@zs-hospital.sh.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH