Comparative genomic analysis illustrates evolutionary dynamics of multisubunit tethering complexes across green algal diversity.

Cymbomonas Dsl1 Prototheca TRAPPII evolutionary cell biology exocyst membrane trafficking peroxisome protist

Journal

The Journal of eukaryotic microbiology
ISSN: 1550-7408
Titre abrégé: J Eukaryot Microbiol
Pays: United States
ID NLM: 9306405

Informations de publication

Date de publication:
01 2023
Historique:
revised: 21 06 2022
received: 17 05 2022
accepted: 29 06 2022
pubmed: 6 7 2022
medline: 13 1 2023
entrez: 5 7 2022
Statut: ppublish

Résumé

The chlorophyte algae are a dominant group of photosynthetic eukaryotes. Although many are photoautotrophs, there are also mixotrophs, heterotrophs, and even parasites. The physical characteristics of green algae are also highly diverse, varying greatly in size, shape, and habitat. Given this morphological and trophic diversity, we postulated that diversity may also exist in the protein components controlling intracellular movement of material by vesicular transport. One such set is the multisubunit tethering complexes (MTCs)-components regulating cargo delivery. As they span endomembrane organelles and are well-conserved across eukaryotes, MTCs should be a good proxy for assessing the evolutionary dynamics across the diversity of Chlorophyta. Our results reveal that while green algae carry a generally conserved and unduplicated complement of MTCs, some intriguing variation exists. Notably, we identified incomplete sets of TRAPPII, exocyst, and HOPS/CORVET components in all Mamiellophyceae, and what is more, not a single subunit of Dsl1 was found in Cymbomonas tetramitiformis. As the absence of Dsl1 has been correlated with having unusual peroxisomes, we searched for peroxisome biogenesis machinery, finding very few components in Cymbomonas, suggestive of peroxisome degeneration. Overall, we demonstrate conservation of MTCs across green algae, but with notable taxon-specific losses suggestive of unusual endomembrane systems.

Identifiants

pubmed: 35790054
doi: 10.1111/jeu.12935
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e12935

Informations de copyright

© 2022 International Society of Protistologists.

Références

Aditya, T., Bitu, G. & Mercy, E.G. (2016) The role of algae in pharmaceutical development. Research & Reviews: Journal of Pharmaceutics and Nanotechnology, 4, 82-89.
Ahmed, S.M., Nishida-Fukuda, H., Li, Y., McDonald, W.H., Gradinaru, C.C. & Macara, I.G. (2018) Exocyst dynamics during vesicle tethering and fusion. Nature Communications, 9, 5140.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.
Balderhaar, H.J.k. & Ungermann, C. (2013) CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. Journal of Cell Science, 126, 1307-1316.
Baum, J., Gilberger, T.-W., Frischknecht, F. & Meissner, M. (2008) Host-cell invasion by malaria parasites: insights from plasmodium and toxoplasma. Trends in Parasitology, 24, 557-563.
Ben-Amotz, A. (1999) Dunaliella β-Carotene. In: Seckbach, J. (Ed.) Enigmatic microorganisms and life in extreme environments. Cellular origin and life in extreme habitats. Dordrecht: Springer Netherlands, pp. 399-410. https://doi.org/10.1007/978-94-011-4838-2_31
Ben-Amotz, A. & Avron, M. (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiology, 51, 875-878.
Borowitzka, L.J. & Brown, A.D. (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Archives of Microbiology, 96, 37-52.
Bröcker, C., Engelbrecht-Vandré, S. & Ungermann, C. (2010) Multi-subunit tethering complexes and their role in membrane fusion. Current Biology, 20, R943-R952.
Brown, F.F., Sussman, I., Avron, M. & Degani, H. (1982) NMR studies of glycerol permeability in lipid vesicles, erythrocytes and the alga Dunaliella. Biochimica et Biophysica Acta (BBA) - Biomembranes, 690, 165-173.
Burns, J.A., Paasch, A., Narechania, A. & Kim, E. (2015) Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of Phago-mixotrophic mode of nutrition. Genome Biology and Evolution, 7, 3047-3061.
Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972-1973.
Cardol, P., Bailleul, B., Rappaport, F., Derelle, E., Béal, D., Breyton, C. et al. (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proceedings of the National Academy of Sciences, 105, 7881-7886.
Crowe, L.P. & Morris, M.T. (2021) Glycosome heterogeneity in kinetoplastids. Biochemical Society Transactions, 49, 29-39.
Derelle, E., Ferraz, C., Rombauts, S., Rouzé, P., Worden, A.Z., Robbens, S. et al. (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences, 103, 11647-11652.
Dubuke M. L. & Munson M. (2016). The secret life of tethers: The role of tethering factors in SNARE complex regulation. Frontiers in Cell and Development Biology, 4, 42. Available from: https://www.frontiersin.org/article/10.3389/fcell.2016.00042
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Farrant, G.K., Doré, H., Cornejo-Castillo, F.M., Partensky, F., Ratin, M., Ostrowski, M. et al. (2016) Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences, 113, E3365-E3374.
Faso, C. & Hehl, A.B. (2011) Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. International Journal for Parasitology, 41, 471-480.
Figueroa-Martinez, F., Nedelcu, A.M., Smith, D.R. & Adrian, R.-P. (2015) When the lights go out: the evolutionary fate of free-living colorless green algae. The New Phytologist, 206, 972-982.
Gabaldón, T., Ginger, M.L. & Michels, P.A.M. (2016) Peroxisomes in parasitic protists. Molecular and Biochemical Parasitology, 209, 35-45.
Gentekaki, E., Curtis, B.A., Stairs, C.W., Klimeš, V., Eliáš, M., Salas-Leiva, D.E. et al. (2017) Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biology, 15, e2003769.
Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J. et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40, D1178-D1186.
Grimsley N. H., Thomas R., Kegel J. U., Jacquet S., Moreau H. & Desdevises Y. (2012). Chapter Nine - genomics of algal host-virus interactions. In: Piganeau G. (ed.), Advances in botanical research. Vol. 64. Genomic insights into the biology of algae. Academic Press. p. 343-381. Available from: https://www.sciencedirect.com/science/article/pii/B9780123914996000098
Heider, M.R., Gu, M., Duffy, C.M., Mirza, A.M., Marcotte, L.L., Walls, A.C. et al. (2016) Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nature Structural & Molecular Biology, 23, 59-66.
Henderson, G.P., Gan, L. & Jensen, G.J. (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One, 2(e749), e749.
Herman, E.K., Greninger, A., van der Giezen, M., Ginger, M.L., Ramirez-Macias, I., Miller, H.C. et al. (2021) Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biology, 19, 142.
Jackson, A.P., Otto, T.D., Aslett, M., Armstrong, S.D., Bringaud, F., Schlacht, A. et al. (2016) Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Current Biology, 26, 161-172.
Jansen, R.L.M., Santana-Molina, C., van den Noort, M., Devos, D.P. & van der Klei, I.J. (2021) Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX proteins. Frontiers in Cell and Development Biology, 9, 654163.
Johnson, L.S., Eddy, S.R. & Portugaly, E. (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics, 11, 431.
Karnkowska, A., Treitli, S.C., Brzoň, O., Novák, L., Vacek, V., Soukal, P. et al. (2019) The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Molecular Biology and Evolution, 36, 2292-2312.
Klinger, C.M., Klute, M.J. & Dacks, J.B. (2013) Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One, 8, e76278.
Kulk, G., van de Poll, W.H., Visser, R.J.W. & Buma, A.G.J. (2013) Low nutrient availability reduces high-irradiance-induced viability loss in oceanic phytoplankton. Limnology and Oceanography, 58, 1747-1760.
Kusumaningrum, H.P. (2008) Microbiological and ecophysiological characterization of green algae Dunaliella sp. for improvement of carotenoid production. Jurnal Natur Indonesia, 10, 66-69.
Lass-Flörl, C. & Mayr, A. (2007) Human protothecosis. Clinical Microbiology Reviews, 20, 230-242.
Le, T., Žárský, V., Nývltová, E., Rada, P., Harant, K., Vancová, M. et al. (2020) Anaerobic peroxisomes in Mastigamoeba balamuthi. Proceedings of the National Academy of Sciences of the United States of America, 117, 2065-2075.
Leles, S.G., Mitra, A., Flynn, K.J., Stoecker, D.K., Hansen, P.J., Calbet, A. et al. (2017) Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Biological Sciences, 284, 20170664.
Leles, S.G., Mitra, A., Flynn, K.J., Tillmann, U., Stoecker, D., Jeong, H.J. et al. (2019) Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 28, 418-428.
Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F. et al. (2012) Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1-46.
Maruyama, S. & Kim, E. (2013) A modern descendant of early green algal Phagotrophs. Current Biology, 23, 1081-1084.
Mei, K. & Guo, W. (2018) The exocyst complex. Current Biology, 28, R922-R925.
Meiringer, C.T.A., Rethmeier, R., Auffarth, K., Wilson, J., Perz, A., Barlowe, C. et al. (2011) The Dsl1 protein tethering complex is a resident endoplasmic reticulum complex, which interacts with five soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors (SNAREs): implications for fusion and fusion regulation. The Journal of Biological Chemistry, 286, 25039-25046.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530-1534.
Mitchell, A.L., Attwood, T.K., Babbitt, P.C., Blum, M., Bork, P., Bridge, A. et al. (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47, D351-D360.
Nickerson, D.P., Brett, C.L. & Merz, A.J. (2009) Vps-C complexes: gatekeepers of endolysosomal traffic. Current Opinion in Cell Biology, 21, 543-551.
Not F., Siano R., Kooistra W. H. C. F., Simon N., Vaulot D. & Probert I. (2012). Chapter one - diversity and ecology of eukaryotic marine phytoplankton. In: Piganeau G. (ed.), Advances in botanical research. Vol. 64. Genomic insights into the biology of algae. Academic Press. p. 1-53. Available from: https://www.sciencedirect.com/science/article/pii/B9780123914996000013
Oborník, M. (2019) Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules, 9, 266.
Oborník, M. (2020) Photoparasitism as an intermediate state in the evolution of apicomplexan parasites. Trends in Parasitology, 36, 727-734.
Oborník M., Dorrell R. G. & Tikhonenkov D. V. 2021. Editorial: mixotrophic, secondary heterotrophic, and parasitic algae. Frontiers in Plant Science 12. Available from: https://www.frontiersin.org/article/10.3389/fpls.2021.798555
Palenik, B., Grimwood, J., Aerts, A., Rouzé, P., Salamov, A., Putnam, N. et al. (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences, 104, 7705-7710.
Perry, R.J., Mast, F.D. & Rachubinski, R.A. (2009) Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. Eukaryotic Cell, 8, 830-843.
Pitaloka, M.K., Petcharat, V., Arikit, S. & Sunpapao, A. (2015) Cephaleuros virescens, the cause of an algal leaf spot on Para rubber in Thailand. Australasian Plant Disease Notes, 10, 4.
Pombert, J.-F., Blouin, N.A., Lane, C., Boucias, D. & Keeling, P.J. (2014) A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genetics, 10, e1004355.
Poulin, R. & Randhawa, H.S. (2015) Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology, 142(Suppl 1), S6-S15.
Ralston, K.S. (2015) Taking a bite: amoebic trogocytosis in Entamoeba histolytica and beyond. Current Opinion in Microbiology, 28, 26-35.
Rambaut A. 2020. FigTree v. 1.4. 4. 2018.
Richardson, E. & Dacks, J.B. (2022) Distribution of membrane trafficking system components across ciliate diversity highlights heterogenous organelle-associated machinery. Traffic, 23, 208-220.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S. et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
Santana-Molina, C., Gutierrez, F. & Devos, D.P. (2021) Homology and modular evolution of CATCHR at the origin of the eukaryotic endomembrane system. Genome Biology and Evolution, 13, evab125).
Satjarak, A., Burns, J.A., Kim, E. & Graham, L.E. (2017) Complete mitochondrial genomes of prasinophyte algae Pyramimonas parkeae and Cymbomonas tetramitiformis. Journal of Phycology, 53, 601-615.
Shave, C.D., Millyard, L. & May, R.C. (2021) Now for something completely different: Prototheca, pathogenic algae. PLoS Pathogens, 17, e1009362.
Silva, S.C., Ferreira, I.C.F.R., Dias, M.M. & Barreiro, M.F. (2020) Microalgae-derived pigments: a 10-year bibliometric review and industry and market trend analysis. Molecules, 25, 3406.
Sunpapao, A., Thithuan, N., Bunjongsiri, P. & Arikit, S. (2016) Cephaleuros parasiticus, associated with algal spot disease on Psidium guajava in Thailand. Australasian Plant Disease Notes, 11, 12.
Sykes J. E. 2014. Chapter 70 - Protothecosis. In: Sykes J. E. (ed.), Canine and feline infectious diseases. Saint Louis, MO. W.B. Saunders. p. 679-685. Available from: https://www.sciencedirect.com/science/article/pii/B9781437707953000703
Tang, Q., Pang, K., Yuan, X. & Xiao, S. (2020) A one-billion-year-old multicellular chlorophyte. Nature Ecology & Evolution, 4, 543-549.
Tartar, A. (2013) The non-photosynthetic algae Helicosporidium spp.: emergence of a novel group of insect pathogens. Insects, 4, 375-391.
Vukašinović N. & Žárský V. 2016. Tethering complexes in the Arabidopsis endomembrane system. Frontiers in Cell and Development Biology, 4, 46. Available from: https://www.frontiersin.org/article/10.3389/fcell.2016.00046
Watanabe, N., Nakada-Tsukui, K. & Nozaki, T. (2020) Two isotypes of phosphatidylinositol 3-phosphate-binding sorting nexins play distinct roles in trogocytosis in Entamoeba histolytica. Cellular Microbiology, 22, e13144.
Wehr J. D. & Sheath R. G. 2015. Chapter 2 - habitats of freshwater algae. In: Wehr J. D., Sheath R. G. & Kociolek J. P. (eds.), Freshwater Algae of North America (Second Edition). Aquatic Ecology. Boston, MA. Academic Press. p. 13-74. Available from: https://www.sciencedirect.com/science/article/pii/B9780123858764000025
Woo, Y.H., Ansari, H., Otto, T.D., Klinger, C.M., Kolisko, M., Michálek, J. et al. (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Nordborg M. (ed.). eLife, 4, e06974.
Worden, A.Z., Lee, J.-H., Mock, T., Rouzé, P., Simmons, M.P., Aerts, A.L. et al. (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science, 324, 268-272.
Záhonová, K., Treitli, S.C., Le, T., Škodová-Sveráková, I., Hanousková, P., Čepička, I. et al. (2022) Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biology, 20, 56.
Žárský, V. & Tachezy, J. (2015) Evolutionary loss of peroxisomes - not limited to parasites. Biology Direct, 10, 74.

Auteurs

Yasinee Phanprasert (Y)

School of Science, Mae Fah Luang University, Chiang Rai, Thailand.

Kacper Maciszewski (K)

Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.

Eleni Gentekaki (E)

School of Science, Mae Fah Luang University, Chiang Rai, Thailand.
Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai, Thailand.

Joel B Dacks (JB)

Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada.
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Institute of Evolutionary Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Biological Evolution History, 20th Century Selection, Genetic History, 19th Century Biology

Classifications MeSH