Bioactive components of different nasal spray solutions may defeat SARS-Cov2: repurposing and in silico studies.


Journal

Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569

Informations de publication

Date de publication:
06 Jul 2022
Historique:
received: 08 05 2021
accepted: 01 07 2022
entrez: 6 7 2022
pubmed: 7 7 2022
medline: 9 7 2022
Statut: epublish

Résumé

The recent outbreak "Coronavirus Disease 2019 (COVID-19)" is caused by fast-spreading and highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). This virus enters into the human respiratory system by binding of the viral surface spike glycoprotein (S-protein) to an angiotensin-converting enzyme2 (ACE2) receptor that is found in the nasal passage and oral cavity of a human. Both spike protein and the ACE2 receptor have been identified as promising therapeutic targets to develop anti-SARS-CoV2 drugs. No therapeutic drugs have been developed as of today except for some vaccines. Therefore, potent therapeutic agents are urgently needed to combat the COVID-19 infections. This goal would be achieved only by applying drug repurposing and computational approaches. Thus, based on drug repurposing approach, we have investigated 16 bioactive components (1-16) from different nasal spray solutions to check their efficacies against human ACE2 and SARS-CoV2 spike proteins by performing molecular docking and molecular dynamic (MD) simulation studies. In this study, three bioactive components namely ciclesonide (8), levocabastine (13), and triamcinolone acetonide (16) have been found as promising inhibitory agents against SARS-CoV2 spike and human ACE2 receptor proteins with excellent binding affinities, comparing to reference drugs such as nafamostat, arbidol, losartan, and benazepril. Furthermore, MD simulations were performed (triplicate) for 100 ns to confirm the stability of 8, 13, and 16 with said protein targets and to compute MM-PBSA-based binding-free energy calculations. Thus, bioactive components 8, 13, and 16 open the door for researchers and scientist globally to investigate them against SARS-CoV2 through in vitro and in vivo analysis.

Identifiants

pubmed: 35794497
doi: 10.1007/s00894-022-05213-9
pii: 10.1007/s00894-022-05213-9
doi:

Substances chimiques

Membrane Glycoproteins 0
Nasal Sprays 0
Peptidyl-Dipeptidase A EC 3.4.15.1
Angiotensin-Converting Enzyme 2 EC 3.4.17.23

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

212

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Zheng J (2020) SARS–CoV–2: an emerging coronavirus that causes a global threat. Int J Biol Sci 16(10):1678–1685
pubmed: 32226285 pmcid: 7098030 doi: 10.7150/ijbs.45053
Khan M, Khan M, Khan Z, Ahamad T, Ansari W (2021) In–silico study to identify dietary molecules as potential SARS–CoV–2 agents. Lett Drug Des Discovery 18(6):562–573
doi: 10.2174/1570180817999201209204153
Ni W, Yang X, Yang D et al (2020) Role of angiotensin–converting enzyme 2 (ACE2) in COVID–19. Critical Care 24(1)
Ansari W, Ahamad T, Khan M, Khan Z, Khan M (2022) Exploration of luteolin as potential anti–COVID–19 agent: molecular docking, molecular dynamic simulation, ADMET and DFTanalysis. Lett Drug Des Discovery 19. https://doi.org/10.2174/1570180819666211222151725
Kumar A, Ansari W, Ahamad T, Saquib M, Khan M (2021) Safe use of sodium dodecyl sulfate (SDS) to deactivate SARS–CoV–2: an evidence–based systematic review. Coronaviruses 2(9):e120821189929
doi: 10.2174/2666796701666210105114804
Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K (2020) A chronicle of SARS–CoV–2: part - I – Epidemiology, diagnosis, prognosis, transmission, and treatment. Sci Total Environ 734:139278
pubmed: 32434058 pmcid: 7227583 doi: 10.1016/j.scitotenv.2020.139278
Mohs R, Greig N (2017) Drug discovery and development: role of basic biological research. Alzheimer’s Dement 3(4):651–657
doi: 10.1016/j.trci.2017.10.005
Djupesland P (2012) Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 3(1):42–62
pubmed: 23316447 pmcid: 3539067 doi: 10.1007/s13346-012-0108-9
Kawauchi H, Yanai K, Wang D, Itahashi K, Okubo K (2019) Antihistamines for allergic rhinitis treatment from the viewpoint of nonsedative properties. Int J Mol Sci 20(1):213
pmcid: 6337346 doi: 10.3390/ijms20010213
Head K, Chong L, Hopkins C, Philpott C, Schilder A, Burton M (2016) Short–course oral steroids as an adjunct therapy for chronic rhinosinusitis. Cochrane Database Syst Rev
Hull D, Rennie P, Noronha A et al (2007) Effects of creating a non–specific, virus–hostile environment in the nasopharynx on symptoms and duration of common cold. Acta Otorhinolaryngol Ital 27(2):73–77
pubmed: 17608134 pmcid: 2640010
Ashburn T, Thor K (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673e683
Khan Z, Karatas Y, Ceylan A, Rahman H (2021) COVID–19 and therapeutic drugs repurposing in hand: the need for collaborative efforts. Pharm Hosp Clin 56:3–11
Gordon C, Tchesnokov E, Woolner E, Perry J, Feng J, Porter D, Gotte M (2020) Remdesivir is a direct–acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 295:6785–97
pubmed: 32284326 pmcid: 7242698 doi: 10.1074/jbc.RA120.013679
Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L (2020) Experimental treatment with favipiravir for COVID–19: an open–label control study. Eng Times 6:1192–8
Hung I, Lung K, Tso E, Liu R, Chung T, Chu M, Ng Y, Lo J, Chan J, Tam A, Shum H, Chan V, Wu A, Sin K, Leung W, Law W, Lung D, Sin S, Yeung P, Yip C, Zhang R, Fung A, Yan E, Leung K, Ip J, Chu A, Chan W, Ng A, Lee R, Fung K, Yeung A, Wu T, Chan J, Yan W, Chan W, Chan J, Lie A, Tsang O, Cheng V, Que T, Lau C, Chan K, To K, Yuen K (2020) Triple combination of interferon beta–1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID–19: an open–label, randomised, phase 2 trial. Lancet 395:1695–1704
pubmed: 32401715 pmcid: 7211500 doi: 10.1016/S0140-6736(20)31042-4
Khan S, Zia K, Ashraf S, Uddin R, Haq Z (2021) Identification of chymotrypsin–like protease inhibitors of SARS–CoV–2 via integrated computational approach. J Biomol Struct Dyn 39(7):1–10
doi: 10.1080/07391102.2020.1751298
Mahdi M, Motyan J, Szojka Z, Golda M, Miczi M, Tozser J (2020) Analysis of the efficacy of HIV protease inhibitors against SARS–CoV–2’s main protease. Virol J 17:190
pubmed: 33243253 pmcid: 7689640 doi: 10.1186/s12985-020-01457-0
Yang C, Ke C, Yue D, Li W, Hu Z, Liu W, Hu S, Wang S, Liu J (2020) Effectiveness of arbidol for COVID–19 prevention in health professionals. Front Public Health 8:249
pubmed: 32574310 pmcid: 7273930 doi: 10.3389/fpubh.2020.00249
Xu P, Huang J, Zhao F, Huang W, Qi M, Lin X, Song W, Yi L (2020) Arbidol/IFN–α2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study
Khuroo M (2020) Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID–19). Facts, fiction, and the hype: a critical appraisal. Int J Antimicrob Agents 56(3):106101
pubmed: 32687949 pmcid: 7366996 doi: 10.1016/j.ijantimicag.2020.106101
Khan S, Dhama K, Pathak M, Tiwari R, Singh B, Sah R, Bonilla-Aldana Rodriguez-Morales A, Leblebicioglu H (2020) Ivermectin, a new candidate therapeutic against SARS–CoV–2/COVID–19. Ann Clin Microbiol Antimicrob 19(1):23
doi: 10.1186/s12941-020-00368-w
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J (2020) Tocilizumab treatment in COVID19: a single center experience. J Med Virol 92:814–818
pubmed: 32253759 pmcid: 7262125 doi: 10.1002/jmv.25801
Singh K, Majumdar S, Singh R, Misra A (2020) Role of corticosteroid in the management of COVID–19: a systemic review and a Clinician’s perspective. Diabetes Metab Syndr 14(5):971–978
pubmed: 32610262 pmcid: 7320713 doi: 10.1016/j.dsx.2020.06.054
Horby P, Lim W, Emberson J, Mafham M, Bell J, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell L, Faust S, Jaki T, Katie J, Montgomery A, Rowan K, Juszczak, Baillei J, Haynes R, Landray M (2020) Effect of dexamethasone in hospitalized patients with COVID–19 preliminary report. N Engl J Med 384:693–704
pubmed: 32678530
Nakazono A, Nakamaru Y, Ramezanpour M, Kondo T, Watanabe M, Hatakeyama S, Kimura S, Honma A, Wormald PJ, Vreugde S, Suzuki M, Homma A (2021) Fluticasone propionate suppresses poly(I:C)–induced ACE2 in primary human nasal epithelial cells. Front Cell Infect Microbiol 11:655666
pubmed: 33981629 pmcid: 8107375 doi: 10.3389/fcimb.2021.655666
Finney L, Glanville N, Farne H, Aniscenko J, Fenwick P, Kemp S, Trujillo-Torralbo M, Loo S, Calderazzo M, Wedzicha J, Mallia P, Bartlett N, Johnston S, Singanayagam A (2020) Inhaled corticosteroids downregulate the SARS–CoV–2 receptor ACE2 in COPD through suppression of type I interferon. J Allergy Clin Immunol 147(2):510–519
pubmed: 33068560 doi: 10.1016/j.jaci.2020.09.034
Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2019) A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep 9(1)
Winther B, Buchert D, Turner R, Hendley J, Tschaikin M (2010) Decreased rhinovirus shedding after intranasal oxymetazoline application in adults with induced colds compared with intranasal saline. Am J Rhinol Allergy 24(5):374–377
pubmed: 21244738 doi: 10.2500/ajra.2010.24.3491
Guenezan J, Garcia M, Strasters D (2021) Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID–19. JAMA Otolaryngol Head Neck Surg 147(4):400
pubmed: 33538761 pmcid: 7863011 doi: 10.1001/jamaoto.2020.5490
Towler P, Staker B, Prasad S, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales N, Patane M, Pantoliano M (2004) ACE2 X-ray structures reveal a large hinge–bending motion important for inhibitor binding and catalysis. J Biol Chem 279(17):17996–18007
pubmed: 14754895 doi: 10.1074/jbc.M311191200
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K, Wang Q, Zhou H, Yan J, Qi J (2020) Structural and functional basis of SARS–CoV–2 entry by using human ACE2. Cell 181(4):894–904
pubmed: 32275855 pmcid: 7144619 doi: 10.1016/j.cell.2020.03.045
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D, Olson A (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791
pubmed: 19399780 pmcid: 2760638 doi: 10.1002/jcc.21256
Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
pubmed: 19499576 pmcid: 3041641
Wallace A, Laskowski R, Thornton J (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8(2):127–134
pubmed: 7630882 doi: 10.1093/protein/8.2.127
Ivanova L, Tammiku-Taul J, García-Sosa A, Sidorova Y, Saarma M, Karelson M (2018) Molecular dynamics simulations of the interactions between glial cell line–derived neurotrophic factor family receptor GFRα1 and small–molecule ligands. ACS Omega 3(9):11407–11414
pubmed: 30320260 pmcid: 6173496 doi: 10.1021/acsomega.8b01524
Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high–resolution protein structure modeling. Proteins 79(10):2794–2812
pubmed: 21905107 pmcid: 3206729 doi: 10.1002/prot.23106
Sur D, Scandale S (2010) Treatment of allergic rhinitis. Am Fam Physician 81(12):1440–1446
pubmed: 20540482
Giavina-Bianchi P (2008) Fluticasone furoate nasal spray in the treatment of allergic rhinitis. Ther Clin Risk Manag 4:465–472
pubmed: 18728833 pmcid: 2504057 doi: 10.2147/TCRM.S1984
Scadding G (2010) Seasonal allergic rhinitis: fluticasone propionate and fluticasone furoate therapy evaluated. J Asthma Allergy 17
Prakash A, Benfield P (1998) Topical Mometasone. Drugs 55:145–163
pubmed: 9463794 doi: 10.2165/00003495-199855010-00009
Bousquet J (2009) Mometasone furoate: an effective anti–inflammatory with a well-defined safety and tolerability profile in the treatment of asthma. Int J Clin Pract 63:806–819
pubmed: 19392928 doi: 10.1111/j.1742-1241.2009.02003.x
Johnson M (1998) Development of fluticasone propionate and comparison with other inhaled corticosteroids. J Allergy Clin Immunol 101:S434–S439
pubmed: 9563368 doi: 10.1016/S0091-6749(98)70155-1
Edwards T (1995) Effectiveness and safety of beclomethasone dipropionate, an intranasal corticosteroid, in the treatment of patients with allergic rhinitis. Clin Ther 17:1032–1041
pubmed: 8750396 doi: 10.1016/0149-2918(95)80082-4
Choulis N (2014) Dermatological drugs, topical agents, and cosmetics. Side Eff Drugs Ann 36:203–231
doi: 10.1016/B978-0-444-63407-8.00014-9
Deeks E, Perry C (2008) Ciclesonide. Drugs 68:1741–1770
pubmed: 18681495 doi: 10.2165/00003495-200868120-00010
Spector S (1997) Overview of comorbid associations of allergic rhinitis. J Allergy Clin Immunol 99:S773–S780
pubmed: 9042070 doi: 10.1016/S0091-6749(97)70126-X
Stokes M, Amorosi S, Thompson D, Dupclay L, Garcia J, Georges G (2004) Evaluation of patients’ preferences for triamcinolone acetonide aqueous, fluticasone propionate, and mometasone furoate nasal sprays in patients with allergic rhinitis. Otolaryngol Head Neck Surg 131:225–231
pubmed: 15365540 doi: 10.1016/j.otohns.2004.04.011
Dokuyucu R, Gokce H, Sahan M, Sefil F, Tas Z, Tutuk O, Ozturk A, Tumer C, Cevik C (2015) Systemic side effects of locally used oxymetazoline. Int J Clin Exp Med 8(2):2674–2678
pubmed: 25932218 pmcid: 4402865
Graf C, Bernkop-Schnürch A, Egyed A, Koller C, Prieschl-Grassauer E, Morokutti-Kurz M (2018) Development of a nasal spray containing xylometazoline hydrochloride and iota–carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. Int J Gen Med 11:275–283
pubmed: 30013382 pmcid: 6037157 doi: 10.2147/IJGM.S167123
Horak F (2008) Effectiveness of twice daily azelastine nasal spray in patients with seasonal allergic rhinitis. Ther Clin Risk Manag 4:1009–1022
pubmed: 19209282 pmcid: 2621402 doi: 10.2147/TCRM.S3229
Ratner P, Hampel F, Amar N, van Bavel J, Mohar D, Marple B, Roland P, Wall G, Brubaker M, Drake M, Turner D, Silver L (2005) Safety and efficacy of olopatadine hydrochloride nasal spray for the treatment of seasonal allergic rhinitis to mountain cedar. Ann Allergy Asthma Immunol 95:474–479
pubmed: 16312171 doi: 10.1016/S1081-1206(10)61174-X
Meltzer E (2010) Treatment of congestion in upper respiratory diseases. Int Gen Med 3:69–91
doi: 10.2147/IJGM.S8184
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS–CoV-2 spike receptor–binding domain bound to the ACE2 receptor. Nature 581:215–220
pubmed: 32225176 doi: 10.1038/s41586-020-2180-5
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS–CoV–2 by full–length human ACE2. Science 367:1444–1448
pubmed: 32132184 pmcid: 7164635 doi: 10.1126/science.abb2762
Pirolli D, Righino B, De Rosa M (2021) Targeting SARS- CoV-2 spike protein/ACE2 protein-protein interactions: a computational study. Mol Informa 40:2060080
doi: 10.1002/minf.202060080
Ahmad I, Pawara R, Surana S, Patel H (2021) The repurposed ACE2 inhibitors: SARS–CoV–2 entry blockers of Covid-19. Top Curr Chem 379(40)
Raghuvamsi P, Tulsian N, Samsudin F, Qian X, Purushotorman K, Yue G, Kozma M, Hwa W, Lescar J, Bond P, MacAry P, Anand G (2021) SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets. eLife 10: e63646
Wang Y, Liu M, Gao J (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen–bonding and hydrophobic interactions. PNAS 117:13967–13974
pubmed: 32503918 pmcid: 7322019 doi: 10.1073/pnas.2008209117

Auteurs

Mohammad Faheem Khan (MF)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India. faheemkhan35@gmail.com.

Waseem Ahmad Ansari (WA)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Tanveer Ahamad (T)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Mohsin Ali Khan (MA)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Zaw Ali Khan (ZA)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Aqib Sarfraz (A)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Mohd Aamish Khan (MA)

Department of Biotechnology, Era's Lucknow Medical College, Era University, Sarfarazganj, Hardoi Road, Lucknow, 226003, UP, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH