Bioactive components of different nasal spray solutions may defeat SARS-Cov2: repurposing and in silico studies.
Ciclesonide
In silico
Levocabastine
Nasal spray solution
SARS-CoV2
Triamcinolone acetonide
Journal
Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569
Informations de publication
Date de publication:
06 Jul 2022
06 Jul 2022
Historique:
received:
08
05
2021
accepted:
01
07
2022
entrez:
6
7
2022
pubmed:
7
7
2022
medline:
9
7
2022
Statut:
epublish
Résumé
The recent outbreak "Coronavirus Disease 2019 (COVID-19)" is caused by fast-spreading and highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). This virus enters into the human respiratory system by binding of the viral surface spike glycoprotein (S-protein) to an angiotensin-converting enzyme2 (ACE2) receptor that is found in the nasal passage and oral cavity of a human. Both spike protein and the ACE2 receptor have been identified as promising therapeutic targets to develop anti-SARS-CoV2 drugs. No therapeutic drugs have been developed as of today except for some vaccines. Therefore, potent therapeutic agents are urgently needed to combat the COVID-19 infections. This goal would be achieved only by applying drug repurposing and computational approaches. Thus, based on drug repurposing approach, we have investigated 16 bioactive components (1-16) from different nasal spray solutions to check their efficacies against human ACE2 and SARS-CoV2 spike proteins by performing molecular docking and molecular dynamic (MD) simulation studies. In this study, three bioactive components namely ciclesonide (8), levocabastine (13), and triamcinolone acetonide (16) have been found as promising inhibitory agents against SARS-CoV2 spike and human ACE2 receptor proteins with excellent binding affinities, comparing to reference drugs such as nafamostat, arbidol, losartan, and benazepril. Furthermore, MD simulations were performed (triplicate) for 100 ns to confirm the stability of 8, 13, and 16 with said protein targets and to compute MM-PBSA-based binding-free energy calculations. Thus, bioactive components 8, 13, and 16 open the door for researchers and scientist globally to investigate them against SARS-CoV2 through in vitro and in vivo analysis.
Identifiants
pubmed: 35794497
doi: 10.1007/s00894-022-05213-9
pii: 10.1007/s00894-022-05213-9
doi:
Substances chimiques
Membrane Glycoproteins
0
Nasal Sprays
0
Peptidyl-Dipeptidase A
EC 3.4.15.1
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
212Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Zheng J (2020) SARS–CoV–2: an emerging coronavirus that causes a global threat. Int J Biol Sci 16(10):1678–1685
pubmed: 32226285
pmcid: 7098030
doi: 10.7150/ijbs.45053
Khan M, Khan M, Khan Z, Ahamad T, Ansari W (2021) In–silico study to identify dietary molecules as potential SARS–CoV–2 agents. Lett Drug Des Discovery 18(6):562–573
doi: 10.2174/1570180817999201209204153
Ni W, Yang X, Yang D et al (2020) Role of angiotensin–converting enzyme 2 (ACE2) in COVID–19. Critical Care 24(1)
Ansari W, Ahamad T, Khan M, Khan Z, Khan M (2022) Exploration of luteolin as potential anti–COVID–19 agent: molecular docking, molecular dynamic simulation, ADMET and DFTanalysis. Lett Drug Des Discovery 19. https://doi.org/10.2174/1570180819666211222151725
Kumar A, Ansari W, Ahamad T, Saquib M, Khan M (2021) Safe use of sodium dodecyl sulfate (SDS) to deactivate SARS–CoV–2: an evidence–based systematic review. Coronaviruses 2(9):e120821189929
doi: 10.2174/2666796701666210105114804
Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K (2020) A chronicle of SARS–CoV–2: part - I – Epidemiology, diagnosis, prognosis, transmission, and treatment. Sci Total Environ 734:139278
pubmed: 32434058
pmcid: 7227583
doi: 10.1016/j.scitotenv.2020.139278
Mohs R, Greig N (2017) Drug discovery and development: role of basic biological research. Alzheimer’s Dement 3(4):651–657
doi: 10.1016/j.trci.2017.10.005
Djupesland P (2012) Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res 3(1):42–62
pubmed: 23316447
pmcid: 3539067
doi: 10.1007/s13346-012-0108-9
Kawauchi H, Yanai K, Wang D, Itahashi K, Okubo K (2019) Antihistamines for allergic rhinitis treatment from the viewpoint of nonsedative properties. Int J Mol Sci 20(1):213
pmcid: 6337346
doi: 10.3390/ijms20010213
Head K, Chong L, Hopkins C, Philpott C, Schilder A, Burton M (2016) Short–course oral steroids as an adjunct therapy for chronic rhinosinusitis. Cochrane Database Syst Rev
Hull D, Rennie P, Noronha A et al (2007) Effects of creating a non–specific, virus–hostile environment in the nasopharynx on symptoms and duration of common cold. Acta Otorhinolaryngol Ital 27(2):73–77
pubmed: 17608134
pmcid: 2640010
Ashburn T, Thor K (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673e683
Khan Z, Karatas Y, Ceylan A, Rahman H (2021) COVID–19 and therapeutic drugs repurposing in hand: the need for collaborative efforts. Pharm Hosp Clin 56:3–11
Gordon C, Tchesnokov E, Woolner E, Perry J, Feng J, Porter D, Gotte M (2020) Remdesivir is a direct–acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 295:6785–97
pubmed: 32284326
pmcid: 7242698
doi: 10.1074/jbc.RA120.013679
Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L (2020) Experimental treatment with favipiravir for COVID–19: an open–label control study. Eng Times 6:1192–8
Hung I, Lung K, Tso E, Liu R, Chung T, Chu M, Ng Y, Lo J, Chan J, Tam A, Shum H, Chan V, Wu A, Sin K, Leung W, Law W, Lung D, Sin S, Yeung P, Yip C, Zhang R, Fung A, Yan E, Leung K, Ip J, Chu A, Chan W, Ng A, Lee R, Fung K, Yeung A, Wu T, Chan J, Yan W, Chan W, Chan J, Lie A, Tsang O, Cheng V, Que T, Lau C, Chan K, To K, Yuen K (2020) Triple combination of interferon beta–1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID–19: an open–label, randomised, phase 2 trial. Lancet 395:1695–1704
pubmed: 32401715
pmcid: 7211500
doi: 10.1016/S0140-6736(20)31042-4
Khan S, Zia K, Ashraf S, Uddin R, Haq Z (2021) Identification of chymotrypsin–like protease inhibitors of SARS–CoV–2 via integrated computational approach. J Biomol Struct Dyn 39(7):1–10
doi: 10.1080/07391102.2020.1751298
Mahdi M, Motyan J, Szojka Z, Golda M, Miczi M, Tozser J (2020) Analysis of the efficacy of HIV protease inhibitors against SARS–CoV–2’s main protease. Virol J 17:190
pubmed: 33243253
pmcid: 7689640
doi: 10.1186/s12985-020-01457-0
Yang C, Ke C, Yue D, Li W, Hu Z, Liu W, Hu S, Wang S, Liu J (2020) Effectiveness of arbidol for COVID–19 prevention in health professionals. Front Public Health 8:249
pubmed: 32574310
pmcid: 7273930
doi: 10.3389/fpubh.2020.00249
Xu P, Huang J, Zhao F, Huang W, Qi M, Lin X, Song W, Yi L (2020) Arbidol/IFN–α2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study
Khuroo M (2020) Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID–19). Facts, fiction, and the hype: a critical appraisal. Int J Antimicrob Agents 56(3):106101
pubmed: 32687949
pmcid: 7366996
doi: 10.1016/j.ijantimicag.2020.106101
Khan S, Dhama K, Pathak M, Tiwari R, Singh B, Sah R, Bonilla-Aldana Rodriguez-Morales A, Leblebicioglu H (2020) Ivermectin, a new candidate therapeutic against SARS–CoV–2/COVID–19. Ann Clin Microbiol Antimicrob 19(1):23
doi: 10.1186/s12941-020-00368-w
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J (2020) Tocilizumab treatment in COVID19: a single center experience. J Med Virol 92:814–818
pubmed: 32253759
pmcid: 7262125
doi: 10.1002/jmv.25801
Singh K, Majumdar S, Singh R, Misra A (2020) Role of corticosteroid in the management of COVID–19: a systemic review and a Clinician’s perspective. Diabetes Metab Syndr 14(5):971–978
pubmed: 32610262
pmcid: 7320713
doi: 10.1016/j.dsx.2020.06.054
Horby P, Lim W, Emberson J, Mafham M, Bell J, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell L, Faust S, Jaki T, Katie J, Montgomery A, Rowan K, Juszczak, Baillei J, Haynes R, Landray M (2020) Effect of dexamethasone in hospitalized patients with COVID–19 preliminary report. N Engl J Med 384:693–704
pubmed: 32678530
Nakazono A, Nakamaru Y, Ramezanpour M, Kondo T, Watanabe M, Hatakeyama S, Kimura S, Honma A, Wormald PJ, Vreugde S, Suzuki M, Homma A (2021) Fluticasone propionate suppresses poly(I:C)–induced ACE2 in primary human nasal epithelial cells. Front Cell Infect Microbiol 11:655666
pubmed: 33981629
pmcid: 8107375
doi: 10.3389/fcimb.2021.655666
Finney L, Glanville N, Farne H, Aniscenko J, Fenwick P, Kemp S, Trujillo-Torralbo M, Loo S, Calderazzo M, Wedzicha J, Mallia P, Bartlett N, Johnston S, Singanayagam A (2020) Inhaled corticosteroids downregulate the SARS–CoV–2 receptor ACE2 in COPD through suppression of type I interferon. J Allergy Clin Immunol 147(2):510–519
pubmed: 33068560
doi: 10.1016/j.jaci.2020.09.034
Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2019) A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep 9(1)
Winther B, Buchert D, Turner R, Hendley J, Tschaikin M (2010) Decreased rhinovirus shedding after intranasal oxymetazoline application in adults with induced colds compared with intranasal saline. Am J Rhinol Allergy 24(5):374–377
pubmed: 21244738
doi: 10.2500/ajra.2010.24.3491
Guenezan J, Garcia M, Strasters D (2021) Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID–19. JAMA Otolaryngol Head Neck Surg 147(4):400
pubmed: 33538761
pmcid: 7863011
doi: 10.1001/jamaoto.2020.5490
Towler P, Staker B, Prasad S, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales N, Patane M, Pantoliano M (2004) ACE2 X-ray structures reveal a large hinge–bending motion important for inhibitor binding and catalysis. J Biol Chem 279(17):17996–18007
pubmed: 14754895
doi: 10.1074/jbc.M311191200
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K, Wang Q, Zhou H, Yan J, Qi J (2020) Structural and functional basis of SARS–CoV–2 entry by using human ACE2. Cell 181(4):894–904
pubmed: 32275855
pmcid: 7144619
doi: 10.1016/j.cell.2020.03.045
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D, Olson A (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791
pubmed: 19399780
pmcid: 2760638
doi: 10.1002/jcc.21256
Trott O, Olson A (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
pubmed: 19499576
pmcid: 3041641
Wallace A, Laskowski R, Thornton J (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8(2):127–134
pubmed: 7630882
doi: 10.1093/protein/8.2.127
Ivanova L, Tammiku-Taul J, García-Sosa A, Sidorova Y, Saarma M, Karelson M (2018) Molecular dynamics simulations of the interactions between glial cell line–derived neurotrophic factor family receptor GFRα1 and small–molecule ligands. ACS Omega 3(9):11407–11414
pubmed: 30320260
pmcid: 6173496
doi: 10.1021/acsomega.8b01524
Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high–resolution protein structure modeling. Proteins 79(10):2794–2812
pubmed: 21905107
pmcid: 3206729
doi: 10.1002/prot.23106
Sur D, Scandale S (2010) Treatment of allergic rhinitis. Am Fam Physician 81(12):1440–1446
pubmed: 20540482
Giavina-Bianchi P (2008) Fluticasone furoate nasal spray in the treatment of allergic rhinitis. Ther Clin Risk Manag 4:465–472
pubmed: 18728833
pmcid: 2504057
doi: 10.2147/TCRM.S1984
Scadding G (2010) Seasonal allergic rhinitis: fluticasone propionate and fluticasone furoate therapy evaluated. J Asthma Allergy 17
Prakash A, Benfield P (1998) Topical Mometasone. Drugs 55:145–163
pubmed: 9463794
doi: 10.2165/00003495-199855010-00009
Bousquet J (2009) Mometasone furoate: an effective anti–inflammatory with a well-defined safety and tolerability profile in the treatment of asthma. Int J Clin Pract 63:806–819
pubmed: 19392928
doi: 10.1111/j.1742-1241.2009.02003.x
Johnson M (1998) Development of fluticasone propionate and comparison with other inhaled corticosteroids. J Allergy Clin Immunol 101:S434–S439
pubmed: 9563368
doi: 10.1016/S0091-6749(98)70155-1
Edwards T (1995) Effectiveness and safety of beclomethasone dipropionate, an intranasal corticosteroid, in the treatment of patients with allergic rhinitis. Clin Ther 17:1032–1041
pubmed: 8750396
doi: 10.1016/0149-2918(95)80082-4
Choulis N (2014) Dermatological drugs, topical agents, and cosmetics. Side Eff Drugs Ann 36:203–231
doi: 10.1016/B978-0-444-63407-8.00014-9
Deeks E, Perry C (2008) Ciclesonide. Drugs 68:1741–1770
pubmed: 18681495
doi: 10.2165/00003495-200868120-00010
Spector S (1997) Overview of comorbid associations of allergic rhinitis. J Allergy Clin Immunol 99:S773–S780
pubmed: 9042070
doi: 10.1016/S0091-6749(97)70126-X
Stokes M, Amorosi S, Thompson D, Dupclay L, Garcia J, Georges G (2004) Evaluation of patients’ preferences for triamcinolone acetonide aqueous, fluticasone propionate, and mometasone furoate nasal sprays in patients with allergic rhinitis. Otolaryngol Head Neck Surg 131:225–231
pubmed: 15365540
doi: 10.1016/j.otohns.2004.04.011
Dokuyucu R, Gokce H, Sahan M, Sefil F, Tas Z, Tutuk O, Ozturk A, Tumer C, Cevik C (2015) Systemic side effects of locally used oxymetazoline. Int J Clin Exp Med 8(2):2674–2678
pubmed: 25932218
pmcid: 4402865
Graf C, Bernkop-Schnürch A, Egyed A, Koller C, Prieschl-Grassauer E, Morokutti-Kurz M (2018) Development of a nasal spray containing xylometazoline hydrochloride and iota–carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. Int J Gen Med 11:275–283
pubmed: 30013382
pmcid: 6037157
doi: 10.2147/IJGM.S167123
Horak F (2008) Effectiveness of twice daily azelastine nasal spray in patients with seasonal allergic rhinitis. Ther Clin Risk Manag 4:1009–1022
pubmed: 19209282
pmcid: 2621402
doi: 10.2147/TCRM.S3229
Ratner P, Hampel F, Amar N, van Bavel J, Mohar D, Marple B, Roland P, Wall G, Brubaker M, Drake M, Turner D, Silver L (2005) Safety and efficacy of olopatadine hydrochloride nasal spray for the treatment of seasonal allergic rhinitis to mountain cedar. Ann Allergy Asthma Immunol 95:474–479
pubmed: 16312171
doi: 10.1016/S1081-1206(10)61174-X
Meltzer E (2010) Treatment of congestion in upper respiratory diseases. Int Gen Med 3:69–91
doi: 10.2147/IJGM.S8184
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS–CoV-2 spike receptor–binding domain bound to the ACE2 receptor. Nature 581:215–220
pubmed: 32225176
doi: 10.1038/s41586-020-2180-5
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS–CoV–2 by full–length human ACE2. Science 367:1444–1448
pubmed: 32132184
pmcid: 7164635
doi: 10.1126/science.abb2762
Pirolli D, Righino B, De Rosa M (2021) Targeting SARS- CoV-2 spike protein/ACE2 protein-protein interactions: a computational study. Mol Informa 40:2060080
doi: 10.1002/minf.202060080
Ahmad I, Pawara R, Surana S, Patel H (2021) The repurposed ACE2 inhibitors: SARS–CoV–2 entry blockers of Covid-19. Top Curr Chem 379(40)
Raghuvamsi P, Tulsian N, Samsudin F, Qian X, Purushotorman K, Yue G, Kozma M, Hwa W, Lescar J, Bond P, MacAry P, Anand G (2021) SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets. eLife 10: e63646
Wang Y, Liu M, Gao J (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen–bonding and hydrophobic interactions. PNAS 117:13967–13974
pubmed: 32503918
pmcid: 7322019
doi: 10.1073/pnas.2008209117