Genomic and transcriptomic analyses of chitin metabolism enzymes in Tenebrio molitor.
chitin
chitin deacetylase
chitin synthase
chitinase
β-N-acetylhexosaminidase
Journal
Archives of insect biochemistry and physiology
ISSN: 1520-6327
Titre abrégé: Arch Insect Biochem Physiol
Pays: United States
ID NLM: 8501752
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
revised:
25
06
2022
received:
29
04
2022
accepted:
27
06
2022
pubmed:
10
7
2022
medline:
14
10
2022
entrez:
9
7
2022
Statut:
ppublish
Résumé
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and β-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-β-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Substances chimiques
Insect Proteins
0
Chitin
1398-61-4
Chitin Synthase
EC 2.4.1.16
Chitinases
EC 3.2.1.14
beta-N-Acetylhexosaminidases
EC 3.2.1.52
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e21950Subventions
Organisme : Yunnan Provincial High-Level Talents Introduction Program to SJW
ID : YNWR-QNBJ-2018-393
Organisme : Yunnan Provincial High-Level Talents Support Program
ID : 32060126
Organisme : National Natural Science Foundation of China
ID : 32060126
Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Ali, M.W., Khan, M.M., Song, F., Wu, L., He, L., Wang, Z. et al. (2020) RNA interference-based silencing of the chitin synthase 1 gene for reproductive and developmental disruptions in Panonychus citri. Insects, 11(11), 786.
Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S. et al. (2019) Signal P 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420-423.
Arakane, Y., Dixit, R., Begum, K., Park, Y., Specht, C.A., Merzendorfer, H. et al. (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 39(5−6), 355-365.
Arakane, Y., Hogenkamp, D.G., Zhu, Y.C., Kramer, K.J., Specht, C.A., Beeman, R.W. et al. (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 34(3), 291-304.
Arakane, Y. & Muthukrishnan, S. (2010) Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences, 67(2), 201-216.
Arakane, Y., Specht, C.A., Kramer, K.J., Muthukrishnan, S. & Beeman, R.W. (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38(10), 959-962.
Blair, D.E., Hekmat, O., Schüttelkopf, A.W., Shrestha, B., Tokuyasu, K., Withers, S.G. et al. (2006) Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry, 45(31), 9416-9426.
Blair, D.E., Schüttelkopf, A.W., MacRae, J.I. & van Aalten, D.M. (2005) Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15429-15434.
Blair, D.E. & van Aalten, D.M. (2004) Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Letters, 570(1−3), 13-19.
Bolognesi, R., Arakane, Y., Muthukrishnan, S., Kramer, K.J., Terra, W.R. & Ferreira, C. (2005) Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 35(11), 1249-1259.
Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972-1973.
Chen, L., Yang, W.J., Cong, L., Xu, K.K. & Wang, J.J. (2013) Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). International Journal of Molecular Sciences, 14(8), 17055-17072.
Chen, W., Jiang, X. & Yang, Q. (2020) Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnology Advances, 43, 107553.
Dias, R.O., Cardoso, C., Leal, C.S., Ribeiro, A.F., Ferreira, C. & Terra, W.R. (2019) Domain structure and expression along the midgut and carcass of peritrophins and cuticle proteins analogous to peritrophins in insects with and without peritrophic membrane. Journal of Insect Physiology, 114, 1-9.
Dixit, R., Arakane, Y., Specht, C.A., Richard, C., Kramer, K.J., Beeman, R.W. et al. (2008) Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochemistry and Molecular Biology, 38(4), 440-451.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C. & Jha, S. et al. (2013) STAR: ultrafast universisal RNA-seq aligner. Bioinformatics, 29(1), 15-21.
Farnesi, L.C., Menna-Barreto, R.F., Martins, A.J., Valle, D. & Rezende, G.L. (2015) Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: connection with distinct levels of resistance to desiccation. Journal of Insect Physiology, 83, 43-52.
Funkhouser, J.D. & Aronson, N.N. Jr. (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evolutionary Biology, 7, 96.
García, I., Lora, J.M., de la Cruz, J., Benítez, T., Llobell, A. & Pintor-Toro, J.A. (1994) Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Current Genetics, 27(1), 83-89.
Hayakawa, Y., Kato, D., Kamiya, K., Minakuchi, C. & Miura, K. (2017) Chitin synthase 1 gene is crucial to antifungal host defense of the model beetle, Tribolium castaneum. Journal of Invertebrate Pathology, 143, 26-34.
Hogenkamp, D.G., Arakane, Y., Kramer, K.J., Muthukrishnan, S. & Beeman, R.W. (2008) Characterization and expression of the β-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38(4), 478-489.
Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J. & Gao, G. (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297.
Jakubowska, A.K., Caccia, S., Gordon, K.H., Ferré, J. & Herrero, S. (2010) Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. Journal of Virology, 84(5), 2547-2555.
Kelkenberg, M., Odman-Naresh, J., Muthukrishnan, S. & Merzendorfer, H. (2015) Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochemistry and Molecular Biology, 56, 21-28.
Kottaipalayam-Somasundaram, S.R., Jacob, J.P., Aiyar, B., Merzendorfer, H. & Nambiar-Veetil, M. (2022) Chitin metabolism as a potential target for RNAi-based control of the forestry pest Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Pest Management Science, 78(1), 296-303.
Kramer, K.J. & Koga, D. (1986) Insect chitin-physical state, synthesis, degradation and metabolic-regulation. Insect Biochemistry, 16, 851-877.
Kramer, K.J. & Muthukrishnan, S. (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology, 27(11), 887-900.
Kumar, N.S., Tang, B., Chen, X., Tian, H. & Zhang, W. (2008) Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua. Comparative Biochemistry and Physiology, 149B(3), 447-453.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology Evolution, 35(6), 1547-1549.
Lemieux, M.J., Mark, B.L., Cherney, M.M., Withers, S.G., Mahuran, D.J. & James, M.N. (2006) Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. Journal of Molecular Biology, 359(4), 913-929.
Li, Y., Liu, L., Yang, J. & Yang, Q. (2021) An overall look at insect chitin deacetylases: promising molecular targets for developing Green pesticides. Journal of Pesticide Science, 46(1), 43-52.
Liu, F., Liu, T., Qu, M. & Yang, Q. (2012) Molecular and biochemical characterization of a novel β-N-acetyl-D-hexosaminidase with broad substrate-spectrum from the Aisan corn borer, Ostrinia furnacalis. International Journal of Biological Sciences, 8(8), 1085-1096.
Liu, S.H., Li, H.F., Yang, Y., Yang, R.L., Yang, W.J., Jiang, H.B. et al. (2018) Genome-wide identification of chitinase and chitin deacetylase gene families in the oriental fruit fly, Bactrocera dorsalis (Hendel). Comparative Biochemistry and Physiology, 27D, 13-22.
Liu, X., Zhang, J. & Zhu, K.Y. (2019) Chitin in arthropods: biosynthesis, modification, and metabolism. Advances in Experimental Medicine and Biology, 1142, 169-207.
Liu, Y., Yang, J., Yao, L., Li, S., Chen, Y., Yang, H. et al. (2020) Chitin deacetylase: a potential target for Mythimna separata (Walker) control. Archives of Insect Biochemistry and Physiology, 104(1), e21666.
Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550.
Lu, J.B., Guo, J.S., Chen, X., Cheng, C., Luo, X.M., Zhang, X.Y. et al. (2021) Chitin synthase 1 and five cuticle protein genes are involved in serosal cuticle formation during early embryogenesis to enhance eggshells in Nilaparvata lugens. Insect Science, 29, 363-378. https://doi.org/10.1111/1744-7917.12937
Mark, B.L., Mahuran, D.J., Cherney, M.M., Zhao, D., Knapp, S. & James, M.N. (2003) Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. Journal of Molecular Biology, 327(5), 1093-1109.
Merzendorfer, H. (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. European Journal of Cell Biology, 90(9), 759-769.
Merzendorfer, H. & Zimoch, L. (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 206(Pt 24), 4393-4412.
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D. & von Haeseler, A. et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular BiologyEvolution, 37(5), 1530-1534.
Moreira, M.F., Dos Santos, A.S., Marotta, H.R., Mansur, J.F., Ramos, I.B., Machado, E.A. et al. (2007) A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochemistry and Molecular Biology, 37(12), 1249-1261.
Muthukrishnan, S. & Beeman, R.W. (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38(10), 959-962.
Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K.J. (2012) Chitin Metabolism in Insects. In: Gilbert, L.I. (Ed.) Insect Molecular Biology and Biochemistry. San Diego: Elsevier, pp. 193-235.
Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Yang, Q. (2019) Chitin organizing and modifying enzymes and proteins involved in remodeling of the insect cuticle. Advances in Experimental Medicine and Biology, 1142, 83-114.
Muzzarelli, R.A.A. (1977) Chitin. Oxford: Pergamon Press, p. 103.
Nakabachi, A., Shigenobu, S. & Miyagishima, S. (2010) Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Molecular Biology, 19(Suppl 2), 175-185.
Omar, M., Ao, Y., Li, M., He, K., Xu, L., Tong, H. et al. (2019) The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Insect Molecular Biology, 28(4), 550-567.
Peng, Z., Ren, J., Su, Q., Zeng, Y., Tian, L., Wang, S. et al. (2021) Genome-wide identification and analysis of chitinase-like gene family in Bemisia tabaci (Hemiptera: Aleyrodidae). Insects, 12(3), 254.
Pesch, Y.Y., Riedel, D., Patil, K.R., Loch, G. & Behr, M. (2016) Chitinases and imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Scientific Reports, 6, 18340.
Qu, M., Liu, T., Chen, P. & Yang, Q. (2013) A sperm-plasma β-N-acetyl-D-hexosaminidase interacting with a chitinolytic β-N-Acetyl-D-hexosaminidase in insect molting fluid. PLoS One, 8(8), e71738.
Rong, S., Li, D.Q., Zhang, X.Y., Li, S., Zhu, K.Y., Guo, Y.P. et al. (2013) RNA interference to reveal roles of β-N-acetylglucosaminidase gene during molting process in Locusta migratoria. Insect Science, 20(1), 109-119.
Shang, F., Xiong, Y., Xia, W.K., Wei, D.D., Wei, D. & Wang, J.J. (2016) Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Molecular Biology, 25(4), 422-430.
Su, C., Tu, G., Huang, S., Yang, Q., Shahzad, M.F. & Li, F. (2016) Genome-wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Insect Molecular Biology, 25(4), 401-412.
Tetreau, G., Cao, X., Chen, Y.R., Muthukrishnan, S., Jiang, H., Blissard, G.W. et al. (2015) Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochemistry and Molecular Biology, 62, 114-26.
Waddling, C.A., Plummer, T.H., Jr. Tarentino, A.L. & Van Roey, P. (2000) Structural basis for the substrate specificity of endo-β-N-acetylglucosaminidase F(3). Biochemistry, 39(27), 7878-7885.
Wang, Y., Fan, H.W., Huang, H.J., Xue, J., Wu, W.J., Bao, Y.Y. et al. (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 42(9), 637-646.
Xi, Y., Pan, P.L., Ye, Y.X., Yu, B., Xu, H.J. & Zhang, C.X. (2015b) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 24(1), 29-40.
Xi, Y., Pan, P.L., Ye, Y.X., Yu, B. & Zhang, C.X. (2014) Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 23(6), 695-705.
Xi, Y., Pan, P.L. & Zhang, C.X. (2015) The β-N-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 24(6), 601-610.
Yang, W.J., Xu, K.K., Yan, X. & Li, C. (2019) Knockdown of β-N-acetylglucosaminidase 2 impairs molting and wing development in Lasioderma serricorne (Fabricius). Insects, 10(11), 396.
Yang, X., Zhou, C., Long, G., Yang, H., Chen, C. & Jin, D. (2021) Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Science, 28(4), 901-916.
Yang, X.B., Zhou, C., Gong, M.F., Yang, H., Long, G.Y. & Jin, D.C. (2021) Identification and RNAi-based functional analysis of four chitin deacetylase genes in Sogatella furcifera (Hemiptera: Delphacidae). Journal of Insect Science, 21(4), 9.
Yu, H.Z., Li, N.Y., Li, B., Toufeeq, S., Xie, Y.X., Huang, Y.L. et al. (2019) Immune functional analysis of chitin deacetylase 3 from the Asian citrus psyllid Diaphorina citri. International Journal of Molecular Sciences, 21(1), 64.
Zhang, J., Zhang, X., Arakane, Y., Muthukrishnan, S., Kramer, K.J., Ma, E. et al. (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One, 6(5), e19899.
Zhang, X., Yuan, J., Li, F. & Xiang, J. (2021) Chitin synthesis and degradation in crustaceans: a genomic view and application. Marine Drugs, 19(3), 153.
Zhang, Z., Yan, J., Liu, Q., Zhang, Y., Gong, J. & Hou, Y. (2019) Genome-wide analysis and hormone regulation of chitin deacetylases in silkworm. International Journal of Molecular Sciences, 20(7), 1679.
Zhong, X.W., Wang, X.H., Tan, X., Xia, Q.Y., Xiang, Z.H. & Zhao, P. (2014) Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. International Journal of Molecular Sciences, 15(2), 1946-1961.
Zhu, B., Shan, J., Li, R., Liang, P. & Gao, X. (2019) Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. Pest Management Science, 75(7), 1951-1961.
Zhu, K.Y., Merzendorfer, H., Zhang, W., Zhang, J. & Muthukrishnan, S. (2016) Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 61, 177-196.
Zhu, Q., Arakane, Y., Banerjee, D., Beeman, R.W., Kramer, K.J. & Muthukrishnan, S. (2008) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochemistry and Molecular Biology, 38(4), 452-466.
Zhu, Q., Arakane, Y., Beeman, R.W., Kramer, K.J. & Muthukrishnan, S. (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6650-6655.