The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence.


Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
09 2022
Historique:
revised: 01 07 2022
received: 09 09 2021
accepted: 06 07 2022
pubmed: 13 7 2022
medline: 12 8 2022
entrez: 12 7 2022
Statut: ppublish

Résumé

Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.

Identifiants

pubmed: 35818668
doi: 10.1111/pce.14393
doi:

Substances chimiques

Amino Acids 0
Arabidopsis Proteins 0
Transcription Factors 0
Carbon 7440-44-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2682-2695

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Araújo, W.L., Ishizaki, K., Nunes-Nesi, A., Larson, T.R., Tohge, T., Krahnert, I. et al. (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. The Plant Cell, 22, 1549-1563.
Araújo, W.L., Tohge, T., Ishizaki, K., Leaver, C.J. & Fernie, A.R. (2011) Protein degradation-an alternative respiratory substrate for stressed plants. Trends in Plant Science, 16, 489-498.
Bakshi, M. & Oelmüller, R. (2014) WRKY transcription factor: Jack of many trades in plants. Plant Signal Behavior, 9, e27700. https://doi.org/10.4161/psb.27700
Barros, J.A.S., Cavalcanti, J.H.F., Medeiros, D.B., Nunes-Nesi, A., Avi-Wittenberg, T., Fernie, A.R. et al. (2017) Autophagy deficiency compromises alternative pathway of respiration following energy deprivation. Plant Physiology, 175, 62-76.
Barros, J.A.S., Magen, S., Lapidot-Cohen, T., Rosental, L., Brotman, Y., Araújo, W.L. et al. (2021) Autophagy is required for lipid homeostasis during dark-induced senescence. Plant Physiology, 85(4), 1542-1558.
Bartoli, C.G., Gomez, F., Gergoff, G., Guiamét, J.J. & Puntarulo, S. (2005) Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. Journal of Experimental Botany, 56, 1269-76.
Besseau, S., Li, J. & Palva, E.T. (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 63, 2667-2679.
Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C. et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23, 873-894.
Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G. et al. (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation induced senescence in Arabidopsis. Plant Journal, 42, 567-585.
Cavalcanti, J.H.F., Kirma, M., Barros, J.A.S., Quinhones, C.G.S., Pereira-Lima, Í.A., Obata, T. et al. (2018) An LL-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. Journal of Experimental Botany, 69, 5489-5506.
Chen, J., Nolan, T., Ye, H., Zhang, M., Tong, H. & Xin, P. et al. (2017a) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. The Plant Cell, 29, 1425-1439.
Chen, L., Xiang, S., Chen, Y., Li, D. & Yu, D. (2017b) Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Molecular Plant, 10, 1174-1189.
Chen, L., Zhang, L., Xiang, S., Chen, Y., Zhang, H. & Yu, D. (2021) The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany, 72, 1473-1489.
Chrobok, D., Law, S.R., Brouwer, B., Lindén, P., Ziolkowska, A., Liebsch, D. et al. (2016) Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiology, 172, 2132-2153.
Clifton, R., Millar, A.H. & Whelan, J. (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica et Biophysica Acta/General Subjects, 1757, 730-741.
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16, 735-743.
Contento, A.L., Kim, S.J. & Bassham, D.C. (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiology, 135, 2330-2347.
Cross, J.M., von Korff, M., Altmann, T., Bartzetko, L., Sulpice, R., Gibon, Y. et al. (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology, 142, 1574-1588.
De Clercq, I., Vermeirssen, V., Van Aken, O., Vandepoele, K., Murcha, M.W., Law, S.R. et al. (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. The Plant Cell, 25, 3472-3490.
Dojcinovic, D., Krosting, J., Harris, A.J., Wagner, D.J. & Rhoads, D.M. (2005) Identification of a region of the Arabidopsis AtAOX1a promoter necessary for mitochondrial retrograde regulation of expression. Plant Molecular Biology, 58, 159-175.
Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J. et al. (2011) Recommendations for reporting metabolite data. The Plant Cell, 23, 2477-2482.
Fernie, A.R., Roscher, A., Ratcliffe, R.G. & Kruger, N.J. (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 212, 250-63.
Finatto, T., Viana, V.E., Woyann, L.G., Busanello, C., Maia, L.C.D. & Oliveira, A.C.D. (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Genetics and Molecular Biology, 41, 533-544.
Gibon, Y., Blaesing, O.E., Hannemann, J., Carillo, P., Hohne, M., Hendriks, J.H. et al. (2006) Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. The Plant Cell, 16, 3304-3325.
Guo, P., Li, Z., Huang, P., Li, B., Fang, S., Chu, J. et al. (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. The Plant Cell, 29, 2854-2870.
Guo, Y., Cai, Z. & Gan, S. (2004) Transcriptome of Arabidopsis leaf senescence. Plant, Cell and Environment, 27, 521-549.
Havé, M., Luo, J., Tellier, F., Balliau, T., Cueff, G., Chardon, F. et al. (2019) Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytologist, 223, 1461-1477.
Heinemann, B. & Hildebrandt, T.M. (2021) The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72, 4634-4645.
Hildebrandt, T.M., Nunes-Nesi, A., Araujo, W.L. & Braun, H.P. (2015) Amino acid catabolism in plants. Molecular Plant, 8, 1563-1579.
Ishizaki, K., Larson, T.R., Schauer, N., Fernie, A.R., Graham, I.A. & Leaver, C.J. (2005) The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. The Plant Cell, 17, 2587-2600.
Ishizaki, K., Schauer, N., Larson, T.R., Graham, I.A., Fernie, A.R. & Leaver, C.J. (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. The Plant Journal, 47, 751-760.
Izumi, M. & Nakamura, S. (2018) Chloroplast protein turnover: the influence of extraplastidic processes, including autophagy. International Journal of Molecular Sciences, 19, 828.
Jiang, Y. & Deyholos, M.K. (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91-105.
Jiang, Y., Liang, G., Yang, S. & Yu, D. (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. The Plant Cell, 26, 230-245.
Kamranfar, I., Xue, G.P., Tohge, T., Sedaghatmehr, M., Fernie, A.R., Balazadeh, S. et al. (2018) Transcription factor RD 26 is a key regulator of metabolic reprogramming during dark-induced senescence. New Phytologist, 218, 1543-1557.
Keech, O., Pesquet, E., Ahad, A., Askne, A., Nordvall, D., Vodnala, S.M. et al. (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant, Cell and Environment, 30, 1523-1534.
Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E. et al. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics, 21, 1635-1638.
Lapidot-Cohen, T., Rosental, L. & Brotman, Y. (2020) Liquid chromatography-mass spectrometry (LC-MS)-based analysis for lipophilic compound profiling in plants. Current Protocols in Plant Biology, 5, e20109. Available from: https://doi.org/10.1002/cppb.20109
Law, S.R., Chrobok, D., Juvany, M., Delhomme, N., Lindén, P., Brouwer, B. et al. (2018) Darkened leaves use different metabolic strategies for senescence and survival. Plant Physiology, 177, 132-150.
Li, S., Fu, Q., Chen, L., Huang, W. & Yu, D. (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 233, 1237-1252.
Li, Z. & Xing, D. (2010) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. Journal of Experimental Botany, 62, 331-43.
Lin, J.F. & Wu, S.H. (2004) Molecular events in senescing Arabidopsis leaves. The Plant Journal, 39, 612-628.
Lisec, L., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A.R. (2006) Gas-chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387-396.
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method. Methods, 25, 402-408.
Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. (2008) TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics, 24, 732-737.
Meng, X., Li, L., Narsai, R., De Clercq, I., Whelan, J. & Berkowitz, O. (2020) Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. The Plant Journal, 103, 227-247.
Miao, Y., Laun, T., Zimmermann, P. & Zentgraf, U. (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology, 55, 853-867.
Mitsuda, N. & Ohme-Takagi, M. (2009) Functional analysis of transcription factors in Arabidopsis. Plant and Cell Physiology, 50, 1232-1248.
Narsai, R., Rocha, M., Geigenberger, P., Whelan, J. & van Dongen, J.T. (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytologist, 190, 472-487.
Ng, S., De Clercq, I., Van Aken, O., Law, S.R., Ivanova, A., Willems, P. et al. (2014) Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Molecular Plant, 7, 1075-1093.
Niu, F., Cui, X., Zhao, P., Sun, M., Yang, B., Deyholos, M.K. et al. (2020) WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. Plant Journal, 104, 171-184.
Pedrotti, L., Weiste, C., Nägele, T., Wolf, E., Lorenzin, F., Dietrich, K. et al. (2018) Snf1-RELATED KINASE1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. The Plant Cell, 30, 495-509.
Peng, C., Uygun, S., Shiu, S.H. & Last, R.L. (2015) The impact of the branched chain ketoacid dehydrogenase complex on amino acid homeostasis in Arabidopsis. Plant Physiology, 169, 1807-1820.
Porra, R.J., Thompson, W.A. & Kriedemann, P.E. (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta/General Subjects, 975, 384-394.
Rushton, P.J., Somssich, I.E., Ringler, P. & Shen, Q.J. (2010) WRKY transcription factors. Trends in Plant Science, 15, 247-258.
Sade, N., Rubio-Wilhelmi, M.D.M., Umnajkitikorn, K. & Blumwald, E. (2018) Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 69, 845-853.
Saha, B., Borovskii, G. & Panda, S.K. (2016) Alternative oxidase and plant stress tolerance. Plant Signaling & Behavior, 12, e1256530.
Salem, M.A., Juppner, J., Bajdzienko, K. & Giavalisco, P. (2016) Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods, 12, 45.
Schön, M., Töller, A., Diezel, C., Roth, C., Westphal, L., Wiermer, M. et al. (2013) Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions, 26, 758-767.
Selinski, J., Scheibe, R., Day, D.A. & Whelan, J. (2018) Alternative oxidase is positive for plant performance. Trends in Plant Science, 23, 588-597.
Song, Y., A, C.R., Jing, S.J. & Yu, D.Q. (2010) Research progress on function analysis of rice WRKY gene. Rice Science, 17, 60-72.
Tiburcio, A.F., Altabella, T., Bitrian, M. & Alcazar, R. (2014) The roles of polyamines during the life span of plants: from development to stress. Planta, 240, 1-18.
Ülker, B. & Somssich, I.E. (2004) WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491-498.
Van Aken, O., De Clercq, I., Ivanova, A., Law, S.R., Van Breusegem, F., Millar, A.H. et al. (2016) Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases. Plant Physiology, 171, 2150-2165.
Van Aken, O., Zhang, B., Carrie, C., Uggalla, V., Paynter, E., Giraud, E. et al. (2009) Defining the mitochondrial stress response in Arabidopsis thaliana. Molecular Plant, 2, 1310-1324.
Van Aken, O., Zhang, B., Law, S., Narsai, R. & Whelan, J. (2013) AtWRKY40 and AtWRKY63 modulate the expression of stress- responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiology, 162, 254-271.
Vanderauwera, S., Vandenbroucke, K., Inze, A., van de Cotte, B., Muhlenbock, P., De Rycke, R. et al. (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proceedings of the National Academic Sciences109, 20113-20118.
Wang, S. & Blumwald, E. (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. Plant Cell, 26, 4875-488.
Wang, Y., Berkowitz, O., Selinski, J., Xu, Y., Hartmann, A. & Whelan, J. (2018) Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radical Biology and Medicine, 122, 28-39.
Wang, Y., Cui, X., Yang, B., Xu, S., Wei, X. & Zhao, P. et al. (2020) WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Arabidopsis. Development, 147(16), dev189647. Available from: https://doi.org/10.1242/dev.189647
Wany, A., Gupta, A.K., Kumari, A., Mishra, S., Singh, N., Pandey, S. et al. (2019) Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. Annali di Botanica, 123, 691-705.
Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J. et al. (2013) Comprehensive dissection of spatio-temporal metabolic shifts in primary, secondary and lipid metabolism during developmental senescence in Arabidopsis thaliana. Plant Physiology, 162, 1290-1310.
Woo, H.R., Masclaux-Daubresse, C. & Lim, P.O. (2018) Plant senescence: how plants know when and how to die. Journal of Experimental Botany, 65, 715-718.
Zentgraf, U. & Doll, J. (2019) Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence. Plants, 8, 578.
Zhang, H., Zhang, L., Wu, S., Chen, Y., Yu, D. & Chen, L. (2020) AtWRKY75 positively regulates age-triggered leaf senescence through gibberellin pathway. plant diversity. Plant Diversity, 4, 331-340.
Zhang, S., Li, C., Wang, R., Chen, Y., Shu, S., Huang, R. et al. (2017) The Arabidopsis mitochondrial protease FtSH4 is involved in leaf senescence via regulation of WRKY-dependent salicylic acid accumulation and signaling. Plant Physiology, 173, 2294-2307.
Zhang, Y., Liu, Z., Wang, X., Wang, J., Fan, K., Li, Z. et al. (2018) DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6. Plant Cell Reports, 37, 981-992.
Zhou, X., Jiang, Y.J. & Yu, D.Q. (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells, 31, 303-313.

Auteurs

Jessica A S Barros (JAS)

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

João Henrique F Cavalcanti (JHF)

Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil.

Karla G Pimentel (KG)

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

David B Medeiros (DB)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.

José C F Silva (JCF)

Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

Jorge A Condori-Apfata (JA)

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

Taly Lapidot-Cohen (T)

Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Yariv Brotman (Y)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Adriano Nunes-Nesi (A)

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

Alisdair R Fernie (AR)

Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.

Tamar Avin-Wittenberg (T)

Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel.

Wagner L Araújo (WL)

Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH