RNA polymerase efficiently transcribes through DNA-scaffolded, cooperative bacteriophage repressor complexes.

atomic force microscopy bacteriophage repressors roadblock efficiency topology transcription

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
08 2022
Historique:
revised: 17 06 2022
received: 22 03 2022
accepted: 19 06 2022
pubmed: 13 7 2022
medline: 31 8 2022
entrez: 12 7 2022
Statut: ppublish

Résumé

DNA can act as a scaffold for the cooperative binding of protein oligomers. For example, the phage 186 CI repressor forms a wheel of seven dimers wrapped in DNA with specific binding sites, while phage λ CI repressor dimers bind to two well-separated sets of operators, forming a DNA loop. Atomic force microscopy was used to measure transcription elongation by Escherichia coli RNA polymerase (RNAP) through these protein complexes. 186 CI, or λ CI, bound along unlooped DNA negligibly interfered with transcription by RNAP. Wrapped and looped topologies induced by these scaffolded, cooperatively bound repressor oligomers did not form significantly better roadblocks to transcription. Thus, despite binding with high affinity, these repressors are not effective roadblocks to transcription.

Identifiants

pubmed: 35819073
doi: 10.1002/1873-3468.14447
pmc: PMC9491066
mid: NIHMS1833100
doi:

Substances chimiques

Viral Regulatory and Accessory Proteins 0
DNA 9007-49-2
DNA-Directed RNA Polymerases EC 2.7.7.6

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1994-2006

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM084070
Pays : United States

Informations de copyright

© 2022 Federation of European Biochemical Societies.

Références

Biophys Rev. 2016 Nov;8(Suppl 1):65-74
pubmed: 28510212
Protein Sci. 2017 Jul;26(7):1427-1438
pubmed: 28295806
Cell. 2014 Jul 17;158(2):314-326
pubmed: 25036631
Science. 1995 Jan 20;267(5196):378-80
pubmed: 7824935
Genome Res. 2018 Jan 11;:
pubmed: 29326300
Curr Opin Struct Biol. 2016 Jun;38:68-74
pubmed: 27295424
Mutat Res. 2011 Jun 3;711(1-2):113-22
pubmed: 21185846
Nat Struct Mol Biol. 2010 Jun;17(6):745-52
pubmed: 20453861
EMBO J. 1999 Aug 2;18(15):4299-307
pubmed: 10428968
Genes Dev. 2004 Mar 15;18(6):602-16
pubmed: 15075289
Cell. 2018 Feb 8;172(4):771-783.e18
pubmed: 29358050
Nucleic Acids Res. 2022 Mar 21;50(5):2826-2835
pubmed: 35188572
Science. 2013 Nov 8;342(6159):731-4
pubmed: 24158908
Genes Dev. 2004 Feb 1;18(3):344-54
pubmed: 14871931
Science. 1989 Jul 28;245(4916):371-8
pubmed: 2667136
Nat Struct Mol Biol. 2011 Nov 13;18(12):1394-9
pubmed: 22081017
Protein Expr Purif. 2013 Sep;91(1):30-6
pubmed: 23831434
Elife. 2015 Jan 16;4:
pubmed: 25594903
Curr Opin Microbiol. 2015 Apr;24:53-9
pubmed: 25638302
Microbiol Rev. 1987 Sep;51(3):301-19
pubmed: 3118156
Mol Microbiol. 1992 Feb;6(4):425-33
pubmed: 1313943
Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7510-4
pubmed: 7638221
Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4558-63
pubmed: 16537413
Genes Dev. 2001 Nov 15;15(22):3013-22
pubmed: 11711436
PLoS One. 2018 Apr 2;13(4):e0194930
pubmed: 29608611
J Mol Biol. 1980 May 15;139(2):163-94
pubmed: 6447795
Nucleic Acids Res. 2013 Jun;41(11):5746-56
pubmed: 23620280
J Bacteriol. 2013 Mar;195(6):1109-19
pubmed: 23292776
Gene. 1986;42(3):253-63
pubmed: 3015739
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5827-32
pubmed: 18391225
Nucleic Acids Res. 2016 Aug 19;44(14):6625-38
pubmed: 27378773
Curr Pharm Biotechnol. 2009 Aug;10(5):494-501
pubmed: 19689317
PLoS Genet. 2019 Dec 12;15(12):e1008456
pubmed: 31830036
Nucleic Acids Res. 2012 Sep;40(16):7728-38
pubmed: 22718983
Nature. 2008 Apr 24;452(7190):1022-5
pubmed: 18432246
Phys Biol. 2006 Dec 22;3(4):R1-10
pubmed: 17200598
Nucleic Acids Res. 2009 May;37(9):2789-95
pubmed: 19276206
Int J Biochem Cell Biol. 1997 Dec;29(12):1305-12
pubmed: 9570129
J Mol Biol. 1980 May 15;139(2):195-205
pubmed: 6447796
J Biol Chem. 1996 May 10;271(19):11525-31
pubmed: 8626713
J Struct Biol. 2006 Nov;156(2):262-72
pubmed: 16879983
Nucleic Acids Res. 2021 Apr 19;49(7):e39
pubmed: 33511418
J Appl Microbiol. 2011 Feb;110(2):375-86
pubmed: 21143355
Epigenomics. 2022 Jan;14(2):69-72
pubmed: 34676777
Biophys Rev. 2016;8(Suppl 1):145-155
pubmed: 28035245
Cell. 2016 Nov 17;167(5):1188-1200
pubmed: 27863240
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14807-12
pubmed: 21873207
Cell. 2016 Nov 17;167(5):1170-1187
pubmed: 27863239
Biophys Rev. 2016 Nov;8(Suppl 1):1-3
pubmed: 28510213
Plant Cell. 2013 Jul;25(7):2560-72
pubmed: 23847151
Cytometry A. 2004 Apr;58(2):167-76
pubmed: 15057970
J Biol Chem. 2002 Feb 1;277(5):3186-94
pubmed: 11700308
C R Biol. 2005 Jun;328(6):521-48
pubmed: 15950160
Mol Cell. 2006 Mar 3;21(5):605-15
pubmed: 16507359
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7222-E7230
pubmed: 29987030
Curr Opin Genet Dev. 2005 Apr;15(2):145-52
pubmed: 15797197
Nat Struct Mol Biol. 2013 Mar;20(3):387-95
pubmed: 23416946
Annu Rev Biochem. 1982;51:61-87
pubmed: 6287922
J Biol Chem. 1996 May 10;271(19):11532-40
pubmed: 8626714
Protein Eng. 1988 Sep;2(3):174-6
pubmed: 3237681
Cell. 2012 Nov 9;151(4):738-749
pubmed: 23141536
Science. 2009 Jul 31;325(5940):626-8
pubmed: 19644123
Mol Microbiol. 2002 Aug;45(3):697-710
pubmed: 12139616
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
J Bacteriol. 2013 Aug;195(15):3401-11
pubmed: 23708136
EMBO Rep. 2015 Nov;16(11):1467-81
pubmed: 26474904
J Mol Biol. 2007 Jun 22;369(5):1200-13
pubmed: 17498740

Auteurs

Yue Lu (Y)

Physics Department, Emory University, Atlanta, GA, USA.

Zsuzsanna Voros (Z)

Physics Department, Emory University, Atlanta, GA, USA.

Gustavo Borjas (G)

Physics Department, Emory University, Atlanta, GA, USA.

Cristin Hendrickson (C)

Physics Department, Emory University, Atlanta, GA, USA.

Keith Shearwin (K)

Department of Molecular and Biomedical Science, University of Adelaide, Australia.

David Dunlap (D)

Physics Department, Emory University, Atlanta, GA, USA.

Laura Finzi (L)

Physics Department, Emory University, Atlanta, GA, USA.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Female Biofilms Animals Lactobacillus Mice
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH