A visible-light activated secondary phosphine oxide ligand enabling Pd-catalyzed radical cross-couplings.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 07 2022
13 07 2022
Historique:
received:
16
02
2022
accepted:
23
06
2022
entrez:
13
7
2022
pubmed:
14
7
2022
medline:
16
7
2022
Statut:
epublish
Résumé
Although transition metal-catalyzed reactions have evolved with ligand development, ligand design for palladium-catalyzed photoreactions remains less explored. Here, we report a secondary phosphine oxide ligand bearing a visible-light sensitization moiety and apply it to Pd-catalyzed radical cross-coupling reactions. The tautomeric phosphinous acid coordinates to palladium in situ, allowing for pseudo-intramolecular single-electron transfer between the ligand and palladium. Molecular design of the metal complexes aided by time-dependent density functional theory calculations enables the involvement of allyl radicals from π-allyl palladium(II) complexes, and alkyl and aryl radicals from the corresponding halides and palladium(0) complex. This complex enables radical cross-couplings by ligand-to-Pd(II) and Pd(0)-to-ligand single-electron transfer under visible-light irradiation.
Identifiants
pubmed: 35831306
doi: 10.1038/s41467-022-31613-9
pii: 10.1038/s41467-022-31613-9
pmc: PMC9279477
doi:
Substances chimiques
Ligands
0
Oxides
0
Phosphines
0
Palladium
5TWQ1V240M
phosphine
FW6947296I
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4052Informations de copyright
© 2022. The Author(s).
Références
ChemSusChem. 2008;1(12):993-6
pubmed: 19034896
Org Lett. 2020 Jun 5;22(11):4467-4470
pubmed: 32432879
J Am Chem Soc. 2021 Sep 1;143(34):13971-13979
pubmed: 34411483
Chem Rev. 2022 Jan 26;122(2):1543-1625
pubmed: 34623151
Chem Sci. 2016 Aug 1;7(8):5032-5051
pubmed: 30155154
Chemistry. 2021 Sep 1;27(49):12635-12641
pubmed: 34190366
J Am Chem Soc. 2020 Jan 8;142(1):495-501
pubmed: 31820964
J Am Chem Soc. 2017 Dec 20;139(50):18307-18312
pubmed: 29116777
Angew Chem Int Ed Engl. 2005 Jul 18;44(29):4442-89
pubmed: 15991198
J Am Chem Soc. 2014 Oct 1;136(39):13606-9
pubmed: 25228064
Nat Commun. 2021 Feb 12;12(1):991
pubmed: 33579940
Angew Chem Int Ed Engl. 2012 May 21;51(21):5062-85
pubmed: 22573393
Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20
pubmed: 18989472
J Am Chem Soc. 2011 Nov 23;133(46):18566-9
pubmed: 22047138
J Am Chem Soc. 2016 May 25;138(20):6340-3
pubmed: 27149524
Chem Rev. 2011 Mar 9;111(3):2177-250
pubmed: 21391570
Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14212-14216
pubmed: 28941019
J Chem Phys. 2010 Mar 21;132(11):114110
pubmed: 20331284
Org Lett. 2018 Jan 19;20(2):357-360
pubmed: 29303271
Angew Chem Int Ed Engl. 2015 Jan 26;54(5):1625-8
pubmed: 25504920
Nat Commun. 2019 Jun 20;10(1):2706
pubmed: 31221955