An association between a positive direct antiglobulin test and HLA-DR12 in COVID-19.
COVID-19
Direct antiglobulin test
Epitope
Human leukocyte antigen
Red blood cell
Journal
Annals of hematology
ISSN: 1432-0584
Titre abrégé: Ann Hematol
Pays: Germany
ID NLM: 9107334
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
14
03
2022
accepted:
28
06
2022
pubmed:
15
7
2022
medline:
17
8
2022
entrez:
14
7
2022
Statut:
ppublish
Résumé
SARS-CoV-2 infection has been reported to be associated with a positive direct antiglobulin test (DAT). In this study, an analysis of 40 consecutive coronavirus disease 2019 (COVID-19) cases from December 2020 to September 2021 in Japan revealed that patients of 70 years and over were predisposed to a positive DAT. DAT positivity was related to a decrease in the hemoglobin level. Anemia in DAT-positive COVID-19 patients was attributed to hemolysis, which was corroborated by high reticulocyte counts and an increase in the red blood cell distribution width. Human leukocyte antigen (HLA)-DRB1*12:01 and DRB1*12:02 were exclusively found in DAT-positive COVID-19 patients. In silico assays for the Spike protein of SARS-CoV-2 predicted several common core peptides that met the criteria for a B cell epitope and strong binding to both HLA-DRB1*12:01 and DRB1*12:02. Among these peptides, the amino acids sequence TSNFR, which is found within the S1 subunit of SARS-CoV-2 Spike protein, is shared by human blood group antigen Rhesus (Rh) CE polypeptides. In vitro analysis showed that the expression of HLA-DR in CD4
Identifiants
pubmed: 35833981
doi: 10.1007/s00277-022-04921-9
pii: 10.1007/s00277-022-04921-9
pmc: PMC9281373
doi:
Substances chimiques
Epitopes, T-Lymphocyte
0
HLA-DR Serological Subtypes
0
HLA-DR12 antigen
0
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1959-1969Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Lazarian G, Quinquenel A, Bellal M, Siavellis J, Jacquy C, Re D, Merabet F, Mekinian A, Braun T, Damaj G, Delmer A, Cymbalista F (2020) Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol 190:29–31. https://doi.org/10.1111/bjh.16794
doi: 10.1111/bjh.16794
pubmed: 32374906
pmcid: 7267601
Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG (2020) Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol 190:31–32. https://doi.org/10.1111/bjh.16786
doi: 10.1111/bjh.16786
pubmed: 32369626
pmcid: 7267644
Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D, APHP Lariboisière COVID Group (2020) SARS-CoV-2-associated cold agglutinin disease: a report of two cases. Ann Hematol 99:1943–1944. https://doi.org/10.1007/s00277-020-04129-9
doi: 10.1007/s00277-020-04129-9
pubmed: 32591877
pmcid: 7317069
Vega Hernández P, Borges Rivas Y, Ortega Sánchez E, Marqués Cabrero A, Remedios Mateo L, Silvera Roig P, Infante Quintanar A, Díaz-Delgado Peñas R, Sánchez Escudero V, García-García ML (2020) Autoimmune hemolytic anemia in a pediatric patient with severe acute respiratory syndrome coronavirus 2 infection. Pediatr Infect Dis J 39:e288. https://doi.org/10.1097/INF.0000000000002809
doi: 10.1097/INF.0000000000002809
pubmed: 32639462
Platton S, Mendes N, Booth C, Lancut J, Lee K, Regan F, Green L (2021) Positive direct antiglobulin tests in patients with COVID-19. Transfusion 61:333–334. https://doi.org/10.1111/trf.16156
doi: 10.1111/trf.16156
pubmed: 33043455
Berzuini A, Bianco C, Paccapelo C, Bertolini F, Gregato G, Cattaneo A, Erba E, Bandera A, Gori A, Lamorte G, Manunta M, Porretti L, Revelli N, Truglio F, Grasselli G, Zanella A, Villa S, Valenti L, Prati D (2020) Red cell-bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood 136:766–768. https://doi.org/10.1182/blood.2020006695
doi: 10.1182/blood.2020006695
pubmed: 32559762
Zagorski E, Pawar T, Rahimian S, Forman D (2020) Cold agglutinin autoimmune haemolytic anaemia associated with novel coronavirus (COVID-19). Br J Haematol 190:e183–e184. https://doi.org/10.1111/bjh.16892
doi: 10.1111/bjh.16892
pubmed: 32460350
pmcid: 7283683
Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, Mucheli SS, Kuperan P, Ong KH (2020) Hematologic parameters in patients with COVID-19 infection. Am J Hematol 95:E131–E134. https://doi.org/10.1002/ajh.25774
doi: 10.1002/ajh.25774
pubmed: 32129508
Taneri PE, Gómez-Ochoa SA, Llanaj E, Raguindin PF, Rojas LZ, Roa-Díaz ZM, Salvador D Jr, Groothof D, Minder B, Kopp-Heim D, Hautz WE, Eisenga MF, Franco OH, Glisic M, Muka T (2020) Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Eur J Epidemiol 35:763–773. https://doi.org/10.1007/s10654-020-00678-5
doi: 10.1007/s10654-020-00678-5
pubmed: 32816244
pmcid: 7438401
Capes A, Bailly S, Hantson P, Gerard L, Laterre PF (2020) COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol 99:1679–1680. https://doi.org/10.1007/s00277-020-04137-9
doi: 10.1007/s00277-020-04137-9
pubmed: 32542444
pmcid: 7295688
Rosenzweig JD, McThenia SS, Kaicker S (2020) SARS-CoV-2 infection in two pediatric patients with immune cytopenias: a single institution experience during the pandemic. Pediatr Blood Cancer 67:e28503. https://doi.org/10.1002/pbc.28503
doi: 10.1002/pbc.28503
pubmed: 32564495
pmcid: 7323032
Berentsen S (2020) New insights in the pathogenesis and therapy of cold agglutinin-mediated autoimmune hemolytic anemia. Front Immunol 11:590. https://doi.org/10.3389/fimmu.2020.00590
doi: 10.3389/fimmu.2020.00590
pubmed: 32318071
pmcid: 7154122
Lucchese G, Flöel A (2020) Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun Rev 19:102556. https://doi.org/10.1016/j.autrev.2020.102556
doi: 10.1016/j.autrev.2020.102556
pubmed: 32361194
pmcid: 7252083
Itoh Y, Mizuki N, Shimada T, Azuma F, Itakura M, Kashiwase K, Kikkawa E, Kulski JK, Satake M, Inoko H (2005) High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 57:717–729. https://doi.org/10.1007/s00251-005-0048-3
doi: 10.1007/s00251-005-0048-3
pubmed: 16215732
Matsuno T, Matsuura H, Fujii S, Suzuki R, Sugiura Y, Miura Y (2022) Anti-Fy
doi: 10.1007/s12185-021-03242-3
pubmed: 34714525
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M (2020) Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 19:2304–2315. https://doi.org/10.1021/acs.jproteome.9b00874
doi: 10.1021/acs.jproteome.9b00874
pubmed: 32308001
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346
doi: 10.1093/nar/gkx346
pubmed: 28472356
pmcid: 5570230
UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. https://doi.org/10.1093/nar/gkaa1100
doi: 10.1093/nar/gkaa1100
Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139. https://doi.org/10.1038/ni1033
doi: 10.1038/ni1033
pubmed: 14749784
Lindstrom TM, Robinson WH (2010) Rheumatoid arthritis: a role for immunosenescence? J Am Geriatr Soc 58:1565–1575. https://doi.org/10.1111/j.1532-5415.2010.02965.x
doi: 10.1111/j.1532-5415.2010.02965.x
pubmed: 20942872
pmcid: 3055796
Foy BH, Carlson JCT, Reinertsen E, Padros I, Valls R, Pallares Lopez R, Palanques-Tost E, Mow C, Westover MB, Aguirre AD, Higgins JM (2020) Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw Open 3:e2022058. https://doi.org/10.1001/jamanetworkopen.2020.22058
doi: 10.1001/jamanetworkopen.2020.22058
pubmed: 32965501
pmcid: 7512057
Patel HH, Patel HR, Higgins JM (2015) Modulation of red blood cell population dynamics is a fundamental homeostatic response to disease. Am J Hematol 90:422–428. https://doi.org/10.1002/ajh.23982
doi: 10.1002/ajh.23982
pubmed: 25691355
pmcid: 4717489
Go RS, Winters JL, Kay NE (2017) How I treat autoimmune hemolytic anemia. Blood 129:2971–2979. https://doi.org/10.1182/blood-2016-11-693689
doi: 10.1182/blood-2016-11-693689
pubmed: 28360039
Brodsky RA (2019) Warm autoimmune hemolytic anemia. N Engl J Med 381:647–654. https://doi.org/10.1056/NEJMcp1900554
doi: 10.1056/NEJMcp1900554
pubmed: 31412178
Wang W, Zhang W, Zhang J, He J, Zhu F (2020) Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA 96:194–196. https://doi.org/10.1111/tan.13941
doi: 10.1111/tan.13941
pubmed: 32424945
pmcid: 7276866
Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F et al (2020) Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med 383:1522–1534. https://doi.org/10.1056/NEJMoa2020283
Keicho N, Itoyama S, Kashiwase K, Phi NC, Long HT, Ha LD, Ban VV, Hoa BK, Hang NT, Hijikata M, Sakurada S, Satake M, Tokunaga K, Sasazuki T, Quy T (2009) Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol 70:527–531. https://doi.org/10.1016/j.humimm.2009.05.006
doi: 10.1016/j.humimm.2009.05.006
pubmed: 19445991
pmcid: 7132661
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X (2020) Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 12:244. https://doi.org/10.3390/v12020244
doi: 10.3390/v12020244
pmcid: 7077191
Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, Liu F, Zhou T, Israelow B, Wong P, Coppi A, Lucas C, Silva J, Oh JE, Song E, Perotti ES, Zheng NS, Fischer S, Campbell M, Fournier JB, Wyllie AL, Vogels CBF, Ott IM, Kalinich CC, Petrone ME, Watkins AE; Yale IMPACT Team, Dela Cruz C, Farhadian SF, Schulz WL, Ma S, Grubaugh ND, Ko AI, Iwasaki A, Ring AM (2021) Diverse functional autoantibodies in patients with COVID-19. Nature 595:283–288. https://doi.org/10.1038/s41586-021-03631-y
Murphy WJ, Longo DL (2022) A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. N Engl J Med 386:394–396. https://doi.org/10.1056/NEJMcibr2113694
doi: 10.1056/NEJMcibr2113694
pubmed: 34818473
Sette A, Crotty S (2021) Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184:861–880. https://doi.org/10.1016/j.cell.2021.01.007
doi: 10.1016/j.cell.2021.01.007
pubmed: 33497610
pmcid: 7803150