Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants.
plastid gene expression
plastid retrograde signal
tetrapyrrole biosynthesis
Journal
Plant communications
ISSN: 2590-3462
Titre abrégé: Plant Commun
Pays: China
ID NLM: 101769147
Informations de publication
Date de publication:
09 01 2023
09 01 2023
Historique:
received:
18
12
2021
revised:
01
07
2022
accepted:
11
07
2022
pubmed:
16
7
2022
medline:
13
1
2023
entrez:
15
7
2022
Statut:
ppublish
Résumé
Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.
Identifiants
pubmed: 35836377
pii: S2590-3462(22)00243-7
doi: 10.1016/j.xplc.2022.100411
pmc: PMC9860167
pii:
doi:
Substances chimiques
Tetrapyrroles
0
GUN4 protein, Arabidopsis
0
Arabidopsis Proteins
0
Intracellular Signaling Peptides and Proteins
0
GUN1 protein, Arabidopsis
0
DNA-Binding Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
100411Informations de copyright
Copyright © 2022. Published by Elsevier Inc.
Références
Plant J. 2012 Jul;71(1):122-34
pubmed: 22380942
Plant Physiol Biochem. 2005 Oct-Nov;43(10-11):901-8
pubmed: 16310365
Curr Biol. 2011 May 24;21(10):897-903
pubmed: 21565502
J Pestic Sci. 2021 Aug 20;46(3):258-266
pubmed: 34566459
Plant Physiol. 2006 Jul;141(3):942-56
pubmed: 16698900
Curr Biol. 2009 Jan 27;19(2):R81-8
pubmed: 19174147
Plant Mol Biol. 1991 Oct;17(4):813-23
pubmed: 1912500
EMBO J. 2020 Nov 16;39(22):e104941
pubmed: 33001465
Plant Physiol. 2018 Feb;176(2):967-976
pubmed: 29254985
Science. 2003 Feb 7;299(5608):902-6
pubmed: 12574634
Science. 2007 May 04;316(5825):715-9
pubmed: 17395793
J Biol Chem. 2016 Apr 22;291(17):8978-84
pubmed: 26969164
Plant Cell. 1999 May;11(5):901-10
pubmed: 10330474
Plant Cell. 2005 Oct;17(10):2791-804
pubmed: 16141451
Virology. 2000 Mar 1;268(1):218-25
pubmed: 10683343
Mol Plant. 2013 Sep;6(5):1580-91
pubmed: 23376773
Annu Rev Plant Biol. 2006;57:739-59
pubmed: 16669780
Plant Cell. 2021 May 5;33(3):457-474
pubmed: 33955483
Plant J. 2013 Jan;73(1):1-13
pubmed: 22950756
Plant Cell. 2010 May;22(5):1498-515
pubmed: 20511297
Plant Physiol. 2016 Apr;170(4):2110-23
pubmed: 26839129
Nat Plants. 2019 May;5(5):525-538
pubmed: 31061535
Nat Rev Genet. 2008 May;9(5):383-95
pubmed: 18368053
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8
pubmed: 11172074
Cell. 1993 Sep 10;74(5):787-99
pubmed: 7690685
Trends Plant Sci. 2013 Apr;18(4):186-94
pubmed: 23246438
Physiol Plant. 2019 May;166(1):451-459
pubmed: 30809817
Plant Physiol. 2009 Nov;151(3):1339-53
pubmed: 19726569
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10162-10167
pubmed: 30988197
Plant J. 2012 Apr;70(2):279-91
pubmed: 22211401
Trends Plant Sci. 2008 Dec;13(12):663-70
pubmed: 19004664
Plant J. 2020 Mar;101(5):1198-1220
pubmed: 31648387
Plant Physiol. 2013 Dec;163(4):1844-58
pubmed: 24144791
Plant Cell. 2007 Dec;19(12):3944-60
pubmed: 18065688
Annu Rev Plant Biol. 2013;64:559-82
pubmed: 23394498
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24900-24906
pubmed: 31732672
Plant Cell Physiol. 2012 Jul;53(7):1344-54
pubmed: 22555813
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1554-E1563
pubmed: 28167782
Front Plant Sci. 2016 Oct 19;7:1586
pubmed: 27807442
Cell. 2010 Jun 25;141(7):1230-40
pubmed: 20603003
Protoplasma. 2017 Sep;254(5):1845-1855
pubmed: 28337540
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15178-83
pubmed: 18818314
Plant Physiol. 2009 Jun;150(2):636-45
pubmed: 19363094
Trends Plant Sci. 2008 Nov;13(11):602-9
pubmed: 18838332
Bioessays. 2008 Jun;30(6):556-66
pubmed: 18478535
Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190402
pubmed: 32362254
Nat Commun. 2018 Jan 3;9(1):50
pubmed: 29298981
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15184-9
pubmed: 18818313
Planta. 1986 Mar;169(1):23-32
pubmed: 24232425
Arch Biochem Biophys. 1993 Oct;306(1):1-15
pubmed: 8215388
J Exp Bot. 2016 Jun;67(13):3909-24
pubmed: 26685190
EMBO Rep. 2003 May;4(5):491-8
pubmed: 12776738
Adv Sci (Weinh). 2019 May 06;6(13):1900361
pubmed: 31380188
Biochim Biophys Acta. 2013 Feb;1833(2):425-37
pubmed: 22749883
Funct Plant Biol. 2003 Jan;30(11):1097-1103
pubmed: 32689092