Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles.


Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
17 Oct 2022
Historique:
received: 22 06 2022
pubmed: 16 7 2022
medline: 13 10 2022
entrez: 15 7 2022
Statut: ppublish

Résumé

Nanoelectrochemistry allows for the investigation of the interaction of per- and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single-particle measurements provide identification of the "discrete" AgNPs agglomeration (e.g. 2-3 NPs) formed through the inter-particles F-F interactions and the selective replacement of the citrate stabilizer by the sulfonate of the PFOS. Such interactions are characteristic only for long chain PFAS (-SO

Identifiants

pubmed: 35838332
doi: 10.1002/anie.202209164
doi:

Substances chimiques

Alkanesulfonates 0
Citrates 0
Fluorocarbons 0
Water Pollutants, Chemical 0
Silver 3M4G523W1G

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202209164

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

P. Grandjean, R. Clapp, NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy 2015, 25, 147-163.
C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, J. Seed, Toxicol. Sci. 2007, 99, 366-394.
US EPA, 2016.
C. Ng, I. T. Cousins, J. C. DeWitt, J. Gluge, G. Goldenman, D. Herzke, R. Lohmann, M. Miller, S. Patton, M. Scheringer, X. Trier, Z. Y. Wang, Environ. Sci. Technol. 2021, 55, 12755-12765.
 
US-EPA-Method 357;
US-EPA-Method 533.
 
H. Ryu, B. Li, S. De Guise, J. McCutcheon, Y. Lei, J. Hazard. Mater. 2021, 408, 124437;
K. L. Rodriguez, J.-H. Hwang, A. R. Esfahani, A. H. M. A. Sadmani, W. H. Lee, Micromachines 2020, 11, 667;
M. Al Amin, Z. Sobhani, Y. Liu, R. Dharmaraja, S. Chadalavada, R. Naidu, J. M. Chalker, C. Fang, Environ. Technol. Innov. 2020, 19, 100879;
Y. Q. Wang, S. B. Darling, J. H. Chen, ACS Appl. Mater. Interfaces 2021, 13, 60789-60814.
 
C.-C. Chang, C.-P. Chen, T.-H. Wu, C.-H. Yang, C.-W. Lin, C.-Y. Chen, Nanomaterials 2019, 9, 861;
V. Montes-García, M. A. Squillaci, M. Diez-Castellnou, Q. K. Ong, F. Stellacci, P. Samorì, Chem. Soc. Rev. 2021, 50, 0.
M. Takayose, K. Akamatsu, H. Nawafune, T. Murashima, J. Matsui, Anal. Lett. 2012, 45, 2856-2864.
H. Niu, S. Wang, Z. Zhou, Y. Ma, X. Ma, Y. Cai, Anal. Chem. 2014, 86, 4170-4177.
 
N. Karimian, A. M. Stortini, L. M. Moretto, C. Costantino, S. Bogialli, P. Ugo, ACS Sens. 2018, 3, 1291-1298;
R. Kazemi, E. I. Potts, J. E. Dick, Anal. Chem. 2020, 92, 10597-10605.
Y. H. Cheng, D. Barpaga, J. A. Soltis, V. Shutthanandan, R. Kargupta, K. S. Han, B. P. McGrail, R. K. Motkuri, S. Basuray, S. Chatterjee, ACS Appl. Mater. Interfaces 2020, 12, 10503-10514.
R. Ranaweera, C. Ghafari, L. Luo, Anal. Chem. 2019, 91, 7744-7748.
 
Y. G. Zhou, N. V. Rees, R. G. Compton, Angew. Chem. Int. Ed. 2011, 50, 4219-4221;
Angew. Chem. 2011, 123, 4305-4307;
P. A. Defnet, B. Zhang, J. Am. Chem. Soc. 2021, 143, 16154-16162;
D. A. Robinson, Y. W. Liu, M. A. Edwards, N. J. Vitti, S. M. Oja, B. Zhang, H. S. White, J. Am. Chem. Soc. 2017, 139, 16923-16931.
P. A. Defnet, T. J. Anderson, B. Zhang, Curr. Opin. Electrochem. 2020, 22, 129-135
C. Batchelor-McAuley, J. Ellison, K. Tschulik, P. L. Hurst, R. Boldt, R. G. Compton, Analyst 2015, 140, 5048-5054.
S. V. Sokolov, T. R. Bartlett, P. Fair, S. Fletcher, R. G. Compton, Anal. Chem. 2016, 88, 8908-8912.
J. Ustarroz, M. Kang, E. Bullions, P. R. Unwin, Chem. Sci. 2017, 8, 1841-1853.
S. M. Oja, D. A. Robinson, N. J. Vitti, M. A. Edwards, Y. Liu, H. S. White, B. Zhang, J. Am. Chem. Soc. 2017, 139, 708-718.
 
W. Ma, H. Ma, J.-F. Chen, Y.-Y. Peng, Z.-Y. Yang, H.-F. Wang, Y.-L. Ying, H. Tian, Y.-T. Long, Chem. Sci. 2017, 8, 1854-1861;
H. Ma, J.-F. Chen, H.-F. Wang, P.-J. Hu, W. Ma, Y.-T. Long, Nat. Commun. 2020, 11, 1-9.
A. Karimi, A. Hayat, S. Andreescu, Biosens. Bioelectron. 2017, 87, 501-507.
A. Karimi, K. A. Kirk, S. Andreescu, ChemElectroChem 2017, 4, 2801-2806.
K. A. Kirk, A. Vasilescu, D. Andreescu, D. Senarathna, S. Mondal, S. Andreescu, Anal. Chem. 2021, 93, 2026-2037.
C. A. Little, R. Xie, C. Batchelor-McAuley, E. Kätelhön, X. Li, N. P. Young, R. G. Compton, Phys. Chem. Chem. Phys. 2018, 20, 13537-13546.
S. V. Sokolov, C. Batchelor-McAuley, K. Tschulik, S. Fletcher, R. G. Compton, Chem. Eur. J. 2015, 21, 10741-10746.
 
T. Yan, H. Chen, F. Jiang, X. Wang, J. Chem. Eng. Data 2014, 59, 508-515;
K. Zhang, J. Huang, G. Yu, Q. Zhang, S. Deng, B. Wang, Environ. Sci. Technol. 2013, 47, 6471-6477.
 
Q. Dong, N. Li, R. Qiu, J. Wang, C. Guo, X. Xu, J. Organomet. Chem. 2015, 799, 122-127;
G. He, M. Zhang, Q. Zhou, G. Pan, Chemosphere 2015, 134, 272-278;
J.-M. Jian, C. Zhang, F. Wang, X. Lu, F. Wang, E. Y. Zeng, Environ. Pollut. 2019, 251, 425-433.
A. Marcilla, A. Gómez-Siurana, M. Beltrán, I. Martínez-Castellanos, I. Blasco, D. Berenguer, J. Sci. Food Agric. 2018, 98, 5916-5931.
M. Sevilla, A. B. Fuertes, J. Mater. Chem. A 2013, 1, 13738-13741.
F. Wang, X. Lu, X.-Y. Li, K. Shih, Environ. Sci. Technol. 2015, 49, 5672-5680.
M. Lu, G. Cagnetta, K. Zhang, J. Huang, G. Yu, Sci. Rep. 2017, 7, 1-10.
E. N. Saw, N. Blanc, K. Kanokkanchana, K. Tschulik, Electrochim. Acta 2018, 282, 317-323.
E. N. Saw, M. Kratz, K. Tschulik, Nano Res. 2017, 10, 3680-3689.
K. J. Krause, F. Brings, J. Schnitker, E. Kätelhön, P. Rinklin, D. Mayer, R. G. Compton, S. G. Lemay, A. Offenhäusser, B. Wolfrum, Chem. Eur. J. 2017, 23, 4638-4643.
G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115.
S. V. Sokolov, S. Eloul, E. Kätelhön, C. Batchelor-McAuley, R. G. Compton, Phys. Chem. Chem. Phys. 2017, 19, 28-43.

Auteurs

Reem Khan (R)

Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.

Daniel Andreescu (D)

Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.

Mohamed H Hassan (MH)

Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.

Jingyun Ye (J)

Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.

Silvana Andreescu (S)

Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.

Articles similaires

Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Hydrochemical characterization and pCO

Kunarika Bhanot, M K Sharma, R D Kaushik
1.00
Rivers Environmental Monitoring Carbon Dioxide Water Pollutants, Chemical India
Wetlands Massachusetts Chlorides Groundwater Environmental Monitoring

Classifications MeSH