Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles.
Detection
Nanoelectrochemistry
Nanoparticles
PFAS
Surface Interactions
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
17 Oct 2022
17 Oct 2022
Historique:
received:
22
06
2022
pubmed:
16
7
2022
medline:
13
10
2022
entrez:
15
7
2022
Statut:
ppublish
Résumé
Nanoelectrochemistry allows for the investigation of the interaction of per- and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single-particle measurements provide identification of the "discrete" AgNPs agglomeration (e.g. 2-3 NPs) formed through the inter-particles F-F interactions and the selective replacement of the citrate stabilizer by the sulfonate of the PFOS. Such interactions are characteristic only for long chain PFAS (-SO
Identifiants
pubmed: 35838332
doi: 10.1002/anie.202209164
doi:
Substances chimiques
Alkanesulfonates
0
Citrates
0
Fluorocarbons
0
Water Pollutants, Chemical
0
Silver
3M4G523W1G
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202209164Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
P. Grandjean, R. Clapp, NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy 2015, 25, 147-163.
C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens, J. Seed, Toxicol. Sci. 2007, 99, 366-394.
US EPA, 2016.
C. Ng, I. T. Cousins, J. C. DeWitt, J. Gluge, G. Goldenman, D. Herzke, R. Lohmann, M. Miller, S. Patton, M. Scheringer, X. Trier, Z. Y. Wang, Environ. Sci. Technol. 2021, 55, 12755-12765.
US-EPA-Method 357;
US-EPA-Method 533.
H. Ryu, B. Li, S. De Guise, J. McCutcheon, Y. Lei, J. Hazard. Mater. 2021, 408, 124437;
K. L. Rodriguez, J.-H. Hwang, A. R. Esfahani, A. H. M. A. Sadmani, W. H. Lee, Micromachines 2020, 11, 667;
M. Al Amin, Z. Sobhani, Y. Liu, R. Dharmaraja, S. Chadalavada, R. Naidu, J. M. Chalker, C. Fang, Environ. Technol. Innov. 2020, 19, 100879;
Y. Q. Wang, S. B. Darling, J. H. Chen, ACS Appl. Mater. Interfaces 2021, 13, 60789-60814.
C.-C. Chang, C.-P. Chen, T.-H. Wu, C.-H. Yang, C.-W. Lin, C.-Y. Chen, Nanomaterials 2019, 9, 861;
V. Montes-García, M. A. Squillaci, M. Diez-Castellnou, Q. K. Ong, F. Stellacci, P. Samorì, Chem. Soc. Rev. 2021, 50, 0.
M. Takayose, K. Akamatsu, H. Nawafune, T. Murashima, J. Matsui, Anal. Lett. 2012, 45, 2856-2864.
H. Niu, S. Wang, Z. Zhou, Y. Ma, X. Ma, Y. Cai, Anal. Chem. 2014, 86, 4170-4177.
N. Karimian, A. M. Stortini, L. M. Moretto, C. Costantino, S. Bogialli, P. Ugo, ACS Sens. 2018, 3, 1291-1298;
R. Kazemi, E. I. Potts, J. E. Dick, Anal. Chem. 2020, 92, 10597-10605.
Y. H. Cheng, D. Barpaga, J. A. Soltis, V. Shutthanandan, R. Kargupta, K. S. Han, B. P. McGrail, R. K. Motkuri, S. Basuray, S. Chatterjee, ACS Appl. Mater. Interfaces 2020, 12, 10503-10514.
R. Ranaweera, C. Ghafari, L. Luo, Anal. Chem. 2019, 91, 7744-7748.
Y. G. Zhou, N. V. Rees, R. G. Compton, Angew. Chem. Int. Ed. 2011, 50, 4219-4221;
Angew. Chem. 2011, 123, 4305-4307;
P. A. Defnet, B. Zhang, J. Am. Chem. Soc. 2021, 143, 16154-16162;
D. A. Robinson, Y. W. Liu, M. A. Edwards, N. J. Vitti, S. M. Oja, B. Zhang, H. S. White, J. Am. Chem. Soc. 2017, 139, 16923-16931.
P. A. Defnet, T. J. Anderson, B. Zhang, Curr. Opin. Electrochem. 2020, 22, 129-135
C. Batchelor-McAuley, J. Ellison, K. Tschulik, P. L. Hurst, R. Boldt, R. G. Compton, Analyst 2015, 140, 5048-5054.
S. V. Sokolov, T. R. Bartlett, P. Fair, S. Fletcher, R. G. Compton, Anal. Chem. 2016, 88, 8908-8912.
J. Ustarroz, M. Kang, E. Bullions, P. R. Unwin, Chem. Sci. 2017, 8, 1841-1853.
S. M. Oja, D. A. Robinson, N. J. Vitti, M. A. Edwards, Y. Liu, H. S. White, B. Zhang, J. Am. Chem. Soc. 2017, 139, 708-718.
W. Ma, H. Ma, J.-F. Chen, Y.-Y. Peng, Z.-Y. Yang, H.-F. Wang, Y.-L. Ying, H. Tian, Y.-T. Long, Chem. Sci. 2017, 8, 1854-1861;
H. Ma, J.-F. Chen, H.-F. Wang, P.-J. Hu, W. Ma, Y.-T. Long, Nat. Commun. 2020, 11, 1-9.
A. Karimi, A. Hayat, S. Andreescu, Biosens. Bioelectron. 2017, 87, 501-507.
A. Karimi, K. A. Kirk, S. Andreescu, ChemElectroChem 2017, 4, 2801-2806.
K. A. Kirk, A. Vasilescu, D. Andreescu, D. Senarathna, S. Mondal, S. Andreescu, Anal. Chem. 2021, 93, 2026-2037.
C. A. Little, R. Xie, C. Batchelor-McAuley, E. Kätelhön, X. Li, N. P. Young, R. G. Compton, Phys. Chem. Chem. Phys. 2018, 20, 13537-13546.
S. V. Sokolov, C. Batchelor-McAuley, K. Tschulik, S. Fletcher, R. G. Compton, Chem. Eur. J. 2015, 21, 10741-10746.
T. Yan, H. Chen, F. Jiang, X. Wang, J. Chem. Eng. Data 2014, 59, 508-515;
K. Zhang, J. Huang, G. Yu, Q. Zhang, S. Deng, B. Wang, Environ. Sci. Technol. 2013, 47, 6471-6477.
Q. Dong, N. Li, R. Qiu, J. Wang, C. Guo, X. Xu, J. Organomet. Chem. 2015, 799, 122-127;
G. He, M. Zhang, Q. Zhou, G. Pan, Chemosphere 2015, 134, 272-278;
J.-M. Jian, C. Zhang, F. Wang, X. Lu, F. Wang, E. Y. Zeng, Environ. Pollut. 2019, 251, 425-433.
A. Marcilla, A. Gómez-Siurana, M. Beltrán, I. Martínez-Castellanos, I. Blasco, D. Berenguer, J. Sci. Food Agric. 2018, 98, 5916-5931.
M. Sevilla, A. B. Fuertes, J. Mater. Chem. A 2013, 1, 13738-13741.
F. Wang, X. Lu, X.-Y. Li, K. Shih, Environ. Sci. Technol. 2015, 49, 5672-5680.
M. Lu, G. Cagnetta, K. Zhang, J. Huang, G. Yu, Sci. Rep. 2017, 7, 1-10.
E. N. Saw, N. Blanc, K. Kanokkanchana, K. Tschulik, Electrochim. Acta 2018, 282, 317-323.
E. N. Saw, M. Kratz, K. Tschulik, Nano Res. 2017, 10, 3680-3689.
K. J. Krause, F. Brings, J. Schnitker, E. Kätelhön, P. Rinklin, D. Mayer, R. G. Compton, S. G. Lemay, A. Offenhäusser, B. Wolfrum, Chem. Eur. J. 2017, 23, 4638-4643.
G. Kresse, J. Hafner, Phys. Rev. B 1993, 48, 13115.
S. V. Sokolov, S. Eloul, E. Kätelhön, C. Batchelor-McAuley, R. G. Compton, Phys. Chem. Chem. Phys. 2017, 19, 28-43.