Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity.


Journal

Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677

Informations de publication

Date de publication:
07 2022
Historique:
received: 14 05 2021
accepted: 13 06 2022
pubmed: 20 7 2022
medline: 23 7 2022
entrez: 19 7 2022
Statut: ppublish

Résumé

Plants use cell-surface immune receptors to recognize pathogen-specific patterns to evoke basal immunity. ENHANCED DISEASE SUSCEPTIBILITY (EDS1) is known to be crucial for plant basal immunity, whereas its activation mechanism by pattern recognition remains enigmatic. Here, we show that the fungal pattern chitin induced the plasma membrane-anchored receptor-like cytoplasmic kinase PBS1-LIKE 19 (PBL19) to undergo nuclear translocation in Arabidopsis. The palmitoylation-deficient PBL19

Identifiants

pubmed: 35851623
doi: 10.1038/s41477-022-01195-x
pii: 10.1038/s41477-022-01195-x
doi:

Substances chimiques

Arabidopsis Proteins 0
DNA-Binding Proteins 0
EDS1 protein, Arabidopsis 0
Receptors, Cell Surface 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

802-816

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Zhou, J. M. & Zhang, Y. Plant immunity: danger perception and signaling. Cell 181, 978–989 (2020).
pubmed: 32442407 doi: 10.1016/j.cell.2020.04.028
Boutrot, F. & Zipfel, C. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55, 257–286 (2017).
pubmed: 28617654 doi: 10.1146/annurev-phyto-080614-120106
Yu, X., Feng, B., He, P. & Shan, L. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55, 109–137 (2017).
pubmed: 28525309 pmcid: 6240913 doi: 10.1146/annurev-phyto-080516-035649
Jubic, L. M., Saile, S., Furzer, O. J., Kasmi, F. E. & Dangl, J. L. Help wanted: helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82–94 (2019).
pubmed: 31063902 doi: 10.1016/j.pbi.2019.03.013
Lolle, S., Stevens, D. & Coaker, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol. 62, 99–105 (2020).
pubmed: 31958770 pmcid: 7190197 doi: 10.1016/j.coi.2019.12.007
Ngou, B. P. M., Ahn, H. K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).
pubmed: 33692545
Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).
pubmed: 33692546 pmcid: 8016741
Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
pubmed: 22498624 doi: 10.1038/nature10947
Bressendorff, S. et al. An innate immunity pathway in the moss Physcomitrella patens. Plant Cell 28, 1328–1342 (2016).
pubmed: 27268428 pmcid: 4944399 doi: 10.1105/tpc.15.00774
Gong, B. Q., Wang, F. Z. & Li, J. F. Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends Plant Sci. 25, 805–816 (2020).
pubmed: 32673581 doi: 10.1016/j.tplants.2020.03.006
Cao, Y. et al. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3, e03766 (2014).
pmcid: 4356144 doi: 10.7554/eLife.03766
Liu, J. et al. A tyrosine phosphorylation cycle regulates fungal activation of a plant receptor Ser/Thr kinase. Cell Host Microbe 23, 241–253 (2018).
pubmed: 29396039 doi: 10.1016/j.chom.2017.12.005
Gong, B. Q. et al. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host Microbe 26, 810–822 (2019).
pubmed: 31830443 doi: 10.1016/j.chom.2019.10.010
Lu, D. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl Acad. Sci. USA 107, 496–501 (2010).
pubmed: 20018686 doi: 10.1073/pnas.0909705107
Zhang, J. et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290–301 (2010).
pubmed: 20413097 doi: 10.1016/j.chom.2010.03.007
Shinya, T. et al. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J. 79, 56–66 (2014).
pubmed: 24750441 doi: 10.1111/tpj.12535
Rao, S. et al. Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling. Plant Physiol. 177, 1679–1690 (2018).
pubmed: 29907700 pmcid: 6084675
Bi, G. et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30, 1543–1561 (2018).
pubmed: 29871986 pmcid: 6096590 doi: 10.1105/tpc.17.00981
Kadota, Y. et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54, 43–55 (2014).
pubmed: 24630626 doi: 10.1016/j.molcel.2014.02.021
Li, L. et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15, 329–338 (2014).
pubmed: 24629339 doi: 10.1016/j.chom.2014.02.009
Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).
pubmed: 31316205 doi: 10.1038/s41586-019-1413-y
Thor, K. et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569–573 (2020).
pubmed: 32846426 pmcid: 8435934 doi: 10.1038/s41586-020-2702-1
Yamada, K. et al. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J. 35, 2468–2483 (2016).
pubmed: 27679653 pmcid: 5109243 doi: 10.15252/embj.201694248
Liu, Y. et al. Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. eLife 8, e44474 (2019).
pubmed: 31524595 pmcid: 6776436 doi: 10.7554/eLife.44474
Tena, G., Boudsocq, M. & Sheen, J. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519–529 (2011).
pubmed: 21704551 pmcid: 3191242 doi: 10.1016/j.pbi.2011.05.006
Li, B., Meng, X., Shan, L. & He, P. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19, 641–650 (2016).
pubmed: 27173932 pmcid: 5049704 doi: 10.1016/j.chom.2016.04.011
Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–550 (2007).
pubmed: 17625569 doi: 10.1038/nature05999
Gao, M. et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 34–44 (2009).
pubmed: 19616764 doi: 10.1016/j.chom.2009.05.019
Pietraszewska-Bogiel, A. et al. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS ONE 8, e65055 (2013).
pubmed: 23750228 pmcid: 3672211 doi: 10.1371/journal.pone.0065055
Domínguez-Ferreras, A. et al. An overdose of the Arabidopsis coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or its ectodomain causes autoimmunity in a SUPPRESSOR OF BIR1-1-dependent manner. Plant Physiol. 168, 1106–1121 (2015).
pubmed: 25944825 pmcid: 4741324 doi: 10.1104/pp.15.00537
Lapin, D., Bhandari, D. D. & Parker, J. E. Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58, 253–276 (2020).
pubmed: 32396762 doi: 10.1146/annurev-phyto-010820-012840
Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 10306–10311 (1998).
pubmed: 9707643 pmcid: 21504 doi: 10.1073/pnas.95.17.10306
Feys, B. J., Moisan, L. J., Newman, M. A. & Parker, J. E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 20, 5400–5411 (2001).
pubmed: 11574472 pmcid: 125652 doi: 10.1093/emboj/20.19.5400
Bartsch, M. et al. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the Nudix hydrolase NUDT7. Plant Cell 18, 1038–1051 (2006).
pubmed: 16531493 pmcid: 1425861 doi: 10.1105/tpc.105.039982
Wirthmueller, L., Zhang, Y., Jones, J. D. G. & Parker, J. E. Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr. Biol. 17, 2023–2029 (2007).
pubmed: 17997306 doi: 10.1016/j.cub.2007.10.042
Cui, H. et al. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 213, 1802–1817 (2017).
pubmed: 27861989 doi: 10.1111/nph.14302
García, A. V. et al. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog. 6, e1000970 (2010).
pubmed: 20617163 pmcid: 2895645 doi: 10.1371/journal.ppat.1000970
Heidrich, K. et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334, 1401–1404 (2011).
pubmed: 22158818 doi: 10.1126/science.1211641
Wiermer, M., Feys, B. J. & Parker, J. E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383–389 (2005).
pubmed: 15939664 doi: 10.1016/j.pbi.2005.05.010
Chen, G. et al. TaEDS1 genes positively regulate resistance to powdery mildew in wheat. Plant Mol. Biol. 96, 607–625 (2018).
pubmed: 29582247 doi: 10.1007/s11103-018-0718-9
Lipka, V. et al. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180–1183 (2005).
pubmed: 16293760 doi: 10.1126/science.1119409
Fradin, E. F. et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150, 320–332 (2009).
pubmed: 19321708 pmcid: 2675724 doi: 10.1104/pp.109.136762
Moreau, M. et al. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora. Mol. Plant Microbe Interact. 25, 421–430 (2012).
pubmed: 22316300 doi: 10.1094/MPMI-05-11-0111
Makandar, R. et al. The combined action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 promotes salicylic acid-mediated defenses to limit Fusarium graminearum infection in Arabidopsis thaliana. Mol. Plant Microbe Interact. 28, 943–953 (2015).
pubmed: 25915452 doi: 10.1094/MPMI-04-15-0079-R
Wu, Y. et al. Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proc. Natl Acad. Sci. USA 117, 27044–27053 (2020).
pubmed: 33055218 pmcid: 7604517 doi: 10.1073/pnas.1915339117
Park, C. J. & Ronald, P. C. Cleavage and nuclear localization of the rice XA21 immune receptor. Nat. Commun. 3, 920 (2012).
pubmed: 22735448 doi: 10.1038/ncomms1932
Lal, N. K. et al. The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell Host Microbe 23, 485–497 (2018).
pubmed: 29649442 pmcid: 6266874 doi: 10.1016/j.chom.2018.03.010
Hemsley, P. A. The importance of lipid modified proteins in plants. New Phytol. 205, 476–489 (2015).
pubmed: 25283240 doi: 10.1111/nph.13085
Grebenok, R. J. et al. Green-fluorescent protein fusions for efficient characterization of nuclear targeting. Plant J. 11, 573–586 (1997).
pubmed: 9107043 doi: 10.1046/j.1365-313X.1997.11030573.x
Gao, F. et al. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5, 1167–1176 (2019).
pubmed: 31636399 doi: 10.1038/s41477-019-0527-4
Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043 (2017).
pubmed: 28841410 pmcid: 6857456 doi: 10.1016/j.cell.2017.08.003
Gao, X. et al. Bifurcation of Arabidopsis NLR immune signaling via Ca
pubmed: 23382673 pmcid: 3561149 doi: 10.1371/journal.ppat.1003127
Nawrath, C. & Métraux, J. P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393–1404 (1999).
pubmed: 10449575 pmcid: 144293
Shen, W., Liu, J. & Li, J. F. Type-II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis. Mol. Plant 12, 1524–1533 (2019).
pubmed: 31454707 doi: 10.1016/j.molp.2019.08.003
Chakraborty, J., Ghosh, P., Sen, S. & Das, S. Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Plant Sci. 276, 250–267 (2018).
pubmed: 30348325 doi: 10.1016/j.plantsci.2018.07.014
Bhattacharjee, S., Halane, M. K., Kim, S. H. & Gassmann, W. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334, 1405–1408 (2011).
pubmed: 22158819 doi: 10.1126/science.1211592
Wagner, S. et al. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14, 619–630 (2013).
pubmed: 24331460 doi: 10.1016/j.chom.2013.11.006
Wong, J. E. M. M. et al. A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc. Natl Acad. Sci. USA 116, 14339–14348 (2019).
pubmed: 31239345 pmcid: 6628658 doi: 10.1073/pnas.1815425116
Chen, L., Zhang, L. & Yu, D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol. Plant Microbe Interact. 23, 558–565 (2010).
pubmed: 20367464 doi: 10.1094/MPMI-23-5-0558
Wu, L. T. et al. Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen Botrytis cinerea. Afr. J. Microbiol. Res. 5, 5481–5488 (2011).
doi: 10.5897/AJMR11.484
Liebrand, T. W. H. et al. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl Acad. Sci. USA 110, 10010–10015 (2013).
pubmed: 23716655 pmcid: 3683720 doi: 10.1073/pnas.1220015110
Pruitt, R. N. et al. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).
pubmed: 34497423 doi: 10.1038/s41586-021-03829-0
Jia, X., Zeng, H., Wang, W., Zhang, F. & Yin, H. Chitosan oligosaccharide induces resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by activating both salicylic acid- and jasmonic acid-mediated pathways. Mol. Plant Microbe Interact. 31, 1271–1279 (2018).
pubmed: 29869942 doi: 10.1094/MPMI-03-18-0071-R
Tateda, C. et al. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell 26, 4171–4187 (2014).
pubmed: 25315322 pmcid: 4247590 doi: 10.1105/tpc.114.131938
Tian, H. et al. Activation of TIR signaling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).
pubmed: 34544113 doi: 10.1038/s41586-021-03987-1
Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).
pubmed: 17585298 doi: 10.1038/nprot.2007.199
Xie, X. et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10, 1246–1249 (2017).
pubmed: 28624544 doi: 10.1016/j.molp.2017.06.004
Pantelides, I. S., Tjamos, S. E. & Paplomatas, E. J. Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Mol. Plant Pathol. 11, 191–202 (2010).
pubmed: 20447269 doi: 10.1111/j.1364-3703.2009.00592.x
Li, Z. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3, 930–936 (2017).
pubmed: 29158545 pmcid: 5894343 doi: 10.1038/s41477-017-0046-0
Gookin, T. E. & Assmann, S. M. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J. 80, 553–567 (2014).
pubmed: 25187041 pmcid: 4260091 doi: 10.1111/tpj.12639
Lei, R., Qiao, W., Hu, F., Jiang, H. & Zhu, S. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability. MethodsX 2, 24–32 (2015).
pubmed: 26150968 doi: 10.1016/j.mex.2014.11.004
Kim, D. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
pubmed: 31375807 pmcid: 7605509 doi: 10.1038/s41587-019-0201-4
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).
pubmed: 20132535 pmcid: 2872874 doi: 10.1186/gb-2010-11-2-r14
Wu, J., Hettenhausen, C., Meldau, S. & Baldwin, I. T. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19, 1096–1122 (2007).
pubmed: 17400894 pmcid: 1867352 doi: 10.1105/tpc.106.049353
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequencing data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP–SEQ) or hybridization to whole genome arrays (ChIP–CHIP). Nat. Protoc. 5, 457–472 (2010).
pubmed: 20203663 doi: 10.1038/nprot.2009.244
Yang, Q. et al. The receptor-like cytoplasmic kinase CDG1 negatively regulates Arabidopsis pattern-triggered immunity and is involved in AvrRpm1-induced RIN4 phosphorylation. Plant Cell 33, 1341–1360 (2021).
pubmed: 33619522 doi: 10.1093/plcell/koab033
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904 pmcid: 8210823 doi: 10.1093/molbev/msw054

Auteurs

Yujia Li (Y)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Jiao Xue (J)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Feng-Zhu Wang (FZ)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Xiangjuan Huang (X)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Ben-Qiang Gong (BQ)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Yuheng Tao (Y)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Wenzhong Shen (W)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Kehan Tao (K)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Nan Yao (N)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Shi Xiao (S)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Jian-Min Zhou (JM)

State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.

Jian-Feng Li (JF)

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. lijfeng3@mail.sysu.edu.cn.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH