Pan-Cancer Analysis Reveals Recurrent BCAR4 Gene Fusions across Solid Tumors.
Journal
Molecular cancer research : MCR
ISSN: 1557-3125
Titre abrégé: Mol Cancer Res
Pays: United States
ID NLM: 101150042
Informations de publication
Date de publication:
04 10 2022
04 10 2022
Historique:
received:
13
09
2021
revised:
04
04
2022
accepted:
10
06
2022
pubmed:
20
7
2022
medline:
6
10
2022
entrez:
19
7
2022
Statut:
ppublish
Résumé
Chromosomal rearrangements often result in active regulatory regions juxtaposed upstream of an oncogene to generate an expressed gene fusion. Repeated activation of a common downstream partner-with differing upstream regions across a patient cohort-suggests a conserved oncogenic role. Analysis of 9,638 patients across 32 solid tumor types revealed an annotated long noncoding RNA (lncRNA), Breast Cancer Anti-Estrogen Resistance 4 (BCAR4), was the most prevalent, uncharacterized, downstream gene fusion partner occurring in 11 cancers. Its oncogenic role was confirmed using multiple cell lines with endogenous BCAR4 gene fusions. Furthermore, overexpressing clinically prevalent BCAR4 gene fusions in untransformed cell lines was sufficient to induce an oncogenic phenotype. We show that the minimum common region to all gene fusions harbors an open reading frame that is necessary to drive proliferation. BCAR4 gene fusions represent an underappreciated class of gene fusions that may have biological and clinical implications across solid tumors.
Identifiants
pubmed: 35852383
pii: 707068
doi: 10.1158/1541-7786.MCR-21-0775
pmc: PMC9530645
doi:
Substances chimiques
RNA, Long Noncoding
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1481-1488Subventions
Organisme : NCI NIH HHS
ID : P30 CA091842
Pays : United States
Informations de copyright
©2022 The Authors; Published by the American Association for Cancer Research.
Références
Nat Methods. 2017 May;14(5):513-520
pubmed: 28394336
Genome Res. 2016 Jan;26(1):108-18
pubmed: 26556708
Anal Chem. 2002 Oct 15;74(20):5383-92
pubmed: 12403597
J Cell Physiol. 2011 Jul;226(7):1741-9
pubmed: 21506106
Br J Cancer. 2010 Oct 12;103(8):1284-91
pubmed: 20859285
Nature. 2017 Mar 16;543(7645):378-384
pubmed: 28112728
Science. 2020 Mar 6;367(6482):1140-1146
pubmed: 32139545
Nat Chem Biol. 2013 Jan;9(1):59-64
pubmed: 23160002
J Proteome Res. 2015 Jun 5;14(6):2707-13
pubmed: 25873244
Cell. 2014 Nov 20;159(5):1110-1125
pubmed: 25416949
Br J Cancer. 2021 Jan;124(1):290-298
pubmed: 33204025
Cancer Res. 2017 Nov 1;77(21):e3-e6
pubmed: 29092927
Cell. 2012 Sep 14;150(6):1121-34
pubmed: 22980976
Nat Med. 2010 Jul;16(7):793-8
pubmed: 20526349
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20
pubmed: 15980438
Genome Res. 2019 Mar;29(3):485-493
pubmed: 30610011
Nature. 2009 Mar 5;458(7234):97-101
pubmed: 19136943
Nucleic Acids Res. 2014 Jan;42(Database issue):D859-64
pubmed: 24185699
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407
pubmed: 31251384
Nucleic Acids Res. 2013 Jan;41(Database issue):D246-51
pubmed: 23042674
Nat Biotechnol. 2021 Jun;39(6):697-704
pubmed: 33510483
NAR Cancer. 2020 Sep;2(3):zcaa015
pubmed: 32803163
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12
pubmed: 25348405
Anal Chem. 2003 Sep 1;75(17):4646-58
pubmed: 14632076
Hum Reprod. 2013 Feb;28(2):430-41
pubmed: 23202989
Science. 2005 Oct 28;310(5748):644-8
pubmed: 16254181
Oncol Res. 2019 Feb 21;27(3):359-369
pubmed: 29615150