Microtubule-binding core of the tau protein.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
22 07 2022
Historique:
entrez: 20 7 2022
pubmed: 21 7 2022
medline: 23 7 2022
Statut: ppublish

Résumé

The protein tau associates with microtubules to maintain neuronal health. Posttranslational modifications of tau interfere with this binding, leading to tau aggregation in neurodegenerative disorders. Here, we use solid-state nuclear magnetic resonance (NMR) to investigate the structure of the microtubule-binding domain of tau. Wild-type tau that contains four microtubule-binding repeats and a pseudorepeat R' is studied. Complexed with taxol-stabilized microtubules, the immobilized residues exhibit well-resolved two-dimensional spectra that can be assigned to the amino-terminal region of R4 and the R' domain. When tau coassembles with tubulin to form unstable microtubules, the R' signals remain, whereas the R4 signals disappear, indicating that R' remains immobilized, whereas R4 becomes more mobile. Therefore, R' outcompetes the other four repeats to associate with microtubules. These NMR data, together with previous cryo-electron microscopy densities, indicate an extended conformation for microtubule-bound R'. R' contains the largest number of charged residues among all repeats, suggesting that charge-charge interaction drives tau-microtubule association.

Identifiants

pubmed: 35857846
doi: 10.1126/sciadv.abo4459
pmc: PMC9299549
doi:

Substances chimiques

Tubulin 0
tau Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eabo4459

Références

J Biomol NMR. 2009 Nov;45(3):319-27
pubmed: 19779834
Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
pubmed: 22762014
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7501-6
pubmed: 26034266
Biochemistry. 1994 Aug 16;33(32):9511-22
pubmed: 8068626
J Am Chem Soc. 2011 Mar 23;133(11):3943-53
pubmed: 21361320
J Cell Sci. 1997 Mar;110 ( Pt 6):789-800
pubmed: 9099953
J Biomol NMR. 2013 Jul;56(3):227-41
pubmed: 23728592
Proc Natl Acad Sci U S A. 1975 May;72(5):1858-62
pubmed: 1057175
J Cell Biol. 1988 Oct;107(4):1449-59
pubmed: 3139677
Bioinformatics. 2016 Dec 1;32(23):3676-3678
pubmed: 27503228
Nature. 2019 Apr;568(7752):420-423
pubmed: 30894745
Nature. 1996 Oct 10;383(6600):550-3
pubmed: 8849730
J Cell Biol. 1987 Nov;105(5):2191-201
pubmed: 3680377
Nat Rev Methods Primers. 2021;1:
pubmed: 34368784
J Biomol NMR. 2016 Oct;66(2):111-124
pubmed: 27663422
Biochemistry. 2020 Jun 23;59(24):2237-2248
pubmed: 32453948
J Am Chem Soc. 2021 May 26;143(20):7839-7851
pubmed: 33983722
Nature. 2017 Jul 13;547(7662):185-190
pubmed: 28678775
J Am Chem Soc. 2014 Sep 10;136(36):12615-23
pubmed: 25162583
J Magn Reson. 2014 Oct;247:118-127
pubmed: 25228502
Nature. 1998 Jan 8;391(6663):199-203
pubmed: 9428769
Trends Pharmacol Sci. 2017 Jul;38(7):637-648
pubmed: 28455089
J Cell Biol. 2002 Jun 24;157(7):1187-96
pubmed: 12082079
Protein Expr Purif. 2003 Nov;32(1):83-8
pubmed: 14680943
J Biol Chem. 2019 Dec 13;294(50):19381-19394
pubmed: 31699899
J Magn Reson. 1997 Nov;129(1):85-92
pubmed: 9405219
Biophys J. 2017 Jun 20;112(12):2567-2574
pubmed: 28636913
Nature. 2007 May 24;447(7143):453-7
pubmed: 17468747
J Biol Chem. 2007 Apr 20;282(16):12230-9
pubmed: 17307736
PLoS One. 2011;6(6):e20161
pubmed: 21731610
J Biol Chem. 2015 Jan 16;290(3):1607-22
pubmed: 25451937
Nat Rev Neurosci. 2016 Jan;17(1):5-21
pubmed: 26631930
Essays Biochem. 2018 Dec 7;62(6):737-751
pubmed: 30315096
Neuron. 1993 Jun;10(6):1089-99
pubmed: 8318230
Nature. 2021 Oct;598(7880):359-363
pubmed: 34588692
Nat Commun. 2021 May 24;12(1):3065
pubmed: 34031406
J Am Chem Soc. 2017 May 3;139(17):6242-6252
pubmed: 28406028
Science. 2018 Jun 15;360(6394):1242-1246
pubmed: 29748322
Mol Biol Cell. 2016 Nov 7;27(22):3537-3549
pubmed: 27582388
Protein Sci. 2002 Apr;11(4):852-61
pubmed: 11910028
Nat Commun. 2020 Jan 2;11(1):18
pubmed: 31896752
Cell. 2021 Nov 11;184(23):5791-5806.e19
pubmed: 34715025
Elife. 2015 Jul 20;4:e07454
pubmed: 26193119
Science. 1998 Dec 4;282(5395):1914-7
pubmed: 9836646
Cell. 2014 May 22;157(5):1117-29
pubmed: 24855948
Biophys J. 2017 Apr 25;112(8):1529-1534
pubmed: 28445744
Angew Chem Int Ed Engl. 2018 Mar 12;57(12):3246-3250
pubmed: 29314492
Neurobiol Aging. 1995 May-Jun;16(3):355-62; discussion 362-3
pubmed: 7566345
Magn Reson Chem. 2020 May;58(5):445-465
pubmed: 31691361
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16357-16366
pubmed: 31358628
Cell. 2020 Dec 10;183(6):1699-1713.e13
pubmed: 33188775
Nature. 2020 Apr;580(7802):283-287
pubmed: 32050258
J Magn Reson. 2009 Apr;197(2):135-44
pubmed: 19138870

Auteurs

Nadia El Mammeri (N)

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Aurelio J Dregni (AJ)

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Pu Duan (P)

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Harrison K Wang (HK)

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Mei Hong (M)

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH