Ligand-Enhanced Negative Images Optimized for Docking Rescoring.

brute-force negative image-based optimization (BR-NiB) docking rescoring ligand-enhanced brute-force negative image-based optimization (LBR-NiB) molecular docking negative image-based rescoring (R-NiB) pharmacophore modelling virtual screening

Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
17 Jul 2022
Historique:
received: 10 06 2022
revised: 14 07 2022
accepted: 15 07 2022
entrez: 27 7 2022
pubmed: 28 7 2022
medline: 29 7 2022
Statut: epublish

Résumé

Despite the pivotal role of molecular docking in modern drug discovery, the default docking scoring functions often fail to recognize active ligands in virtual screening campaigns. Negative image-based rescoring improves docking enrichment by comparing the shape/electrostatic potential (ESP) of the flexible docking poses against the target protein's inverted cavity volume. By optimizing these negative image-based (NIB) models using a greedy search, the docking rescoring yield can be improved massively and consistently. Here, a fundamental modification is implemented to this shape-focused pharmacophore modelling approach-actual ligand 3D coordinates are incorporated into the NIB models for the optimization. This hybrid approach, labelled as ligand-enhanced brute-force negative image-based optimization (LBR-NiB), takes the best from both worlds, i.e., the all-roundedness of the NIB models and the difficult to emulate atomic arrangements of actual protein-bound small-molecule ligands. Thorough benchmarking, focused on proinflammatory targets, shows that the LBR-NiB routinely improves the docking enrichment over prior iterations of the R-NiB methodology. This boost can be massive, if the added ligand information provides truly essential binding information that was lacking or completely missing from the cavity-based NIB model. On a practical level, the results indicate that the LBR-NiB typically works well when the added ligand 3D data originates from a high-quality source, such as X-ray crystallography, and, yet, the NIB model compositions can also sometimes be improved by fusing into them, for example, with flexibly docked solvent molecules. In short, the study demonstrates that the protein-bound ligands can be used to improve the shape/ESP features of the negative images for effective docking rescoring use in virtual screening.

Identifiants

pubmed: 35887220
pii: ijms23147871
doi: 10.3390/ijms23147871
pmc: PMC9323918
pii:
doi:

Substances chimiques

Ligands 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Academy of Finland
ID : 337530
Organisme : Novo Nordisk Foundation
ID : 0068926

Références

J Chem Inf Model. 2022 Feb 28;62(4):1100-1112
pubmed: 35133138
J Mol Biol. 1997 Apr 4;267(3):727-48
pubmed: 9126849
J Chem Theory Comput. 2016 Jan 12;12(1):281-96
pubmed: 26584231
Chem Biol Drug Des. 2019 Oct;94(4):1799-1812
pubmed: 31260165
Front Pharmacol. 2018 Mar 26;9:260
pubmed: 29632488
Mutat Res. 2009 Oct 2;669(1-2):1-7
pubmed: 19563816
Structure. 2009 Apr 15;17(4):489-98
pubmed: 19368882
J Chem Inf Model. 2007 Mar-Apr;47(2):488-508
pubmed: 17288412
Prostate. 2013 Sep;73(13):1391-402
pubmed: 23765639
J Comput Chem. 2015 Jun 5;36(15):1132-56
pubmed: 25914306
J Mol Biol. 1999 Jan 29;285(4):1735-47
pubmed: 9917408
Mucosal Immunol. 2017 Jan;10(1):162-171
pubmed: 27049060
J Chem Inf Model. 2019 Aug 26;59(8):3584-3599
pubmed: 31290660
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Chem Inf Model. 2009 Jan;49(1):84-96
pubmed: 19125657
Int J Mol Sci. 2019 Jun 06;20(11):
pubmed: 31174295
J Cheminform. 2016 Sep 07;8(1):45
pubmed: 27606011
J Med Chem. 2012 Jul 26;55(14):6582-94
pubmed: 22716043
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
J Comput Aided Mol Des. 2004 Jun;18(6):401-19
pubmed: 15663001
J Med Chem. 2004 Mar 25;47(7):1739-49
pubmed: 15027865
J Chem Inf Model. 2009 Feb;49(2):169-84
pubmed: 19434821
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10626-31
pubmed: 20498053
J Chem Inf Model. 2010 Feb 22;50(2):205-16
pubmed: 20088575
J Mol Biol. 1996 Aug 23;261(3):470-89
pubmed: 8780787
J Chem Inf Model. 2013 Aug 26;53(8):1893-904
pubmed: 23379370
J Chem Inf Model. 2007 Jan-Feb;47(1):122-33
pubmed: 17238257
J Med Chem. 2006 Nov 16;49(23):6789-801
pubmed: 17154509
Bioorg Med Chem Lett. 2006 Aug 1;16(15):4016-20
pubmed: 16737814
J Comput Aided Mol Des. 2002 Jan;16(1):11-26
pubmed: 12197663
J Chem Inf Model. 2022 Jan 10;62(1):9-15
pubmed: 34932340
J Med Chem. 2004 Mar 25;47(7):1750-9
pubmed: 15027866
J Chem Inf Model. 2009 Feb;49(2):492-502
pubmed: 19434847
Drug Discov Today. 2011 May;16(9-10):372-6
pubmed: 21349346
J Comput Aided Mol Des. 2015 Oct;29(10):989-1006
pubmed: 26407559
J Chem Inf Model. 2021 Feb 22;61(2):699-714
pubmed: 33494610

Auteurs

Sami T Kurkinen (ST)

Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.
Aurlide Ltd., FI-21420 Lieto, Finland.
InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland.

Jukka V Lehtonen (JV)

Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland.
InFLAMES Research Flagship Center, Åbo Akademi University, FI-20014 Turku, Finland.

Olli T Pentikäinen (OT)

Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.
Aurlide Ltd., FI-21420 Lieto, Finland.
InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland.

Pekka A Postila (PA)

Institute of Biomedicine, Integrative Physiology and Pharmacy, University of Turku, FI-20014 Turku, Finland.
Aurlide Ltd., FI-21420 Lieto, Finland.
InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Humans Chondrocytes Osteoarthritis Matrix Metalloproteinase 13 Drug Discovery

Classifications MeSH