Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 07 2022
Historique:
received: 22 10 2021
accepted: 30 06 2022
entrez: 27 7 2022
pubmed: 28 7 2022
medline: 30 7 2022
Statut: epublish

Résumé

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.

Identifiants

pubmed: 35896547
doi: 10.1038/s41467-022-31730-5
pii: 10.1038/s41467-022-31730-5
pmc: PMC9329287
doi:

Substances chimiques

Immunoglobulin E 37341-29-0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4320

Subventions

Organisme : NIBIB NIH HHS
ID : P41 EB015922
Pays : United States
Organisme : Medical Research Council
ID : MR/M00841X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S00355X/1
Pays : United Kingdom
Organisme : NIBIB NIH HHS
ID : U54 EB020403
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS106957
Pays : United States
Organisme : Medical Research Council
ID : G080212
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : R21 NS107739
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH018399
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS122827
Pays : United States
Organisme : Medical Research Council
ID : MR/K013998/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s).

Références

Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).
doi: 10.1016/S1474-4422(18)30499-X
Engel, J. Jr. et al. Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194 (2013).
pubmed: 23406911 pmcid: 4064674 doi: 10.1097/WCO.0b013e32835ee5b8
Lariviere S, et al. Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study. Sci. Adv. 6, 1–13 (2020).
Bernhardt, B. C. et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann. Neurol. 80, 142–153 (2016).
pubmed: 27228409 doi: 10.1002/ana.24691
Concha, L., Kim, H., Bernasconi, A., Bernhardt, B. C. & Bernasconi, N. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology 79, 455–462 (2012).
pubmed: 22815555 pmcid: 3405250 doi: 10.1212/WNL.0b013e31826170b6
Wang, Z. et al. Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology 93, e1112–e1122 (2019).
pubmed: 31405905 pmcid: 6746209 doi: 10.1212/WNL.0000000000008096
Weng, Y. et al. Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Commun. Biol. 3, 1–11 (2020).
doi: 10.1038/s42003-020-0958-5
Labate, A. et al. Voxel-based morphometry of sporadic epileptic patients with mesiotemporal sclerosis. Epilepsia 51, 506–510 (2010).
pubmed: 19780790 doi: 10.1111/j.1528-1167.2009.02310.x
McDonald, C. R. et al. Regional neocortical thinning in mesial temporal lobe epilepsy. Epilepsia 49, 794–803 (2008).
pubmed: 18266751 doi: 10.1111/j.1528-1167.2008.01539.x
Bernhardt, B. C. et al. Thalamo–cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage 46, 373–381 (2009).
pubmed: 19385011 doi: 10.1016/j.neuroimage.2009.01.055
O’Muircheartaigh, J. et al. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain 135, 3635–3644 (2012).
pubmed: 23250883 pmcid: 3525058 doi: 10.1093/brain/aws296
Sisodiya SM, et al. The ENIGMA-Epilepsy working group: Mapping disease from large data sets. Hum. Brain Mapp. 43, 113–128 (2022).
Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).
pubmed: 23531697 pmcid: 4043276 doi: 10.1038/nrn3465
Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci.: Off. J. Soc. Neurosci. 25, 8303–8310 (2005).
doi: 10.1523/JNEUROSCI.0357-05.2005
Gong, G., He, Y., Chen, Z. J. & Evans, A. C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage 59, 1239–1248 (2012).
pubmed: 21884805 doi: 10.1016/j.neuroimage.2011.08.017
Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci.: Off. J. Soc. Neurosci. 33, 2889–2899 (2013).
doi: 10.1523/JNEUROSCI.3554-12.2013
Zielinski, B. A., Gennatas, E. D., Zhou, J. & Seeley, W. W. Network-level structural covariance in the developing brain. Proc. Natl Acad. Sci. USA 107, 18191–18196 (2010).
pubmed: 20921389 pmcid: 2964249 doi: 10.1073/pnas.1003109107
Khundrakpam BS, et al. Developmental changes in organization of structural brain networks. Cereb. Cortex 23, 2072–2085 (2012).
Lerch, J. P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003 (2006).
pubmed: 16624590 doi: 10.1016/j.neuroimage.2006.01.042
Valk, S. L. et al. Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci. Adv. 6, eabb3417 (2020).
pubmed: 32978162 pmcid: 7518868 doi: 10.1126/sciadv.abb3417
Valk SL, et al. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat. Commun. 13, 1–17 (2022).
Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
pubmed: 19190637 doi: 10.1038/nrn2575
Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).
pubmed: 15350243 doi: 10.1016/j.tics.2004.07.008
Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C. & Bernasconi, N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb. Cortex 21, 2147–2157 (2011).
pubmed: 21330467 doi: 10.1093/cercor/bhq291
Yasuda, C. L. et al. Aberrant topological patterns of brain structural network in temporal lobe epilepsy. Epilepsia 56, 1992–2002 (2015).
pubmed: 26530395 doi: 10.1111/epi.13225
Bernhardt, B. C., Bernasconi, N., Hong, S., Dery, S. & Bernasconi, A. Subregional mesiotemporal network topology is altered in temporal lobe epilepsy. Cereb. Cortex 26, 3237–3248 (2016).
pubmed: 26223262 doi: 10.1093/cercor/bhv166
Liao, W. et al. Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy. Brain Connect. 3, 240–254 (2013).
pubmed: 23510272 pmcid: 3685391 doi: 10.1089/brain.2012.0132
Bonilha, L. et al. Neurodevelopmental alterations of large‐scale structural networks in children with new‐onset epilepsy. Hum. brain Mapp. 35, 3661–3672 (2014).
pubmed: 24453089 pmcid: 4107168 doi: 10.1002/hbm.22428
Lee, H. J. & Park, K. M. Structural and functional connectivity in newly diagnosed juvenile myoclonic epilepsy. Acta Neurol. Scand. 139, 469–475 (2019).
pubmed: 30758836 doi: 10.1111/ane.13079
Sone, D. et al. Reduced resilience of brain gray matter networks in idiopathic generalized epilepsy: A graph-theoretical analysis. PloS One 14, e0212494 (2019).
pubmed: 30768622 pmcid: 6377139 doi: 10.1371/journal.pone.0212494
Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).
pubmed: 27845257 doi: 10.1016/j.neuroimage.2016.11.006
Lariviere, S. et al. Microstructure-informed connectomics: enriching large-scale descriptions of healthy and diseased brains. Brain Connect. 9, 113–127 (2019).
pubmed: 30079754 pmcid: 6444904 doi: 10.1089/brain.2018.0587
Consortium TILAE. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 1–15 (2018).
Leu, C. et al. Pleiotropy of polygenic factors associated with focal and generalized epilepsy in the general population. PloS One 15, e0232292 (2020).
pubmed: 32343744 pmcid: 7188256 doi: 10.1371/journal.pone.0232292
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553 pmcid: 4243026 doi: 10.1038/nature11405
Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D. Bridging the gap between connectome and transcriptome. Trends Cogn. Sci. 23, 34–50 (2019).
pubmed: 30455082 doi: 10.1016/j.tics.2018.10.005
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).
pubmed: 29860082 doi: 10.1016/j.neuroimage.2018.05.070
Wei Y, et al. Statistical testing in transcriptomic‐neuroimaging studies: A how‐to and evaluation of methods assessing spatial and gene specificity.). Wiley Online Library (2022).
Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141, 391–408 (2018).
pubmed: 29365066 pmcid: 5837616 doi: 10.1093/brain/awx341
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Chen AA, et al. Removal of scanner effects in covariance improves multivariate pattern analysis in neuroimaging data. bioRxiv, 858415 (2020).
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).
pubmed: 9623998 doi: 10.1038/30918
Bernhardt, B. C., Bonilha, L. & Gross, D. W. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 50, 162–170 (2015).
pubmed: 26159729 doi: 10.1016/j.yebeh.2015.06.005
Lariviere S, et al. The ENIGMA Toolbox: Cross-disorder integration and multiscale neural contextualization of multisite neuroimaging datasets. bioRxiv, (2020).
Allen, A. S. et al. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 16, 135–143 (2017).
doi: 10.1016/S1474-4422(16)30359-3
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
pubmed: 27910877 doi: 10.1038/nrd.2016.230
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444 doi: 10.1038/s41588-018-0269-7
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558 pmcid: 6454898 doi: 10.1038/s41588-019-0344-8
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
pubmed: 31043756 pmcid: 6956732 doi: 10.1038/s41588-019-0397-8
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
pubmed: 30718901 pmcid: 6522363 doi: 10.1038/s41593-018-0326-7
Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).
pubmed: 27322543 pmcid: 5331903 doi: 10.1038/ng.3598
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656 pmcid: 5918692 doi: 10.1038/s41588-018-0059-2
Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).
pubmed: 30648605 doi: 10.1016/j.neuroimage.2019.01.011
Zhu Y, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, 1–12 (2018).
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854 pmcid: 6413317 doi: 10.1126/science.aat7615
Wannan, C. M. et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am. J. Psychiatry 176, 552–563 (2019).
pubmed: 31164006 doi: 10.1176/appi.ajp.2019.18040380
Bonilha, L. et al. Asymmetrical extra-hippocampal grey matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 78, 286–294 (2007).
pubmed: 17012334 doi: 10.1136/jnnp.2006.103994
Bonilha, L. et al. Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia 51, 519–528 (2010).
pubmed: 20163442 pmcid: 2855766 doi: 10.1111/j.1528-1167.2009.02506.x
de Wael, R. V. et al. Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. Proc. Natl Acad. Sci. 115, 10154–10159 (2018).
doi: 10.1073/pnas.1803667115
Van Strien, N., Cappaert, N. & Witter, M. The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat. Rev. Neurosci. 10, 272–282 (2009).
pubmed: 19300446 doi: 10.1038/nrn2614
Knopp, A., Kivi, A., Wozny, C., Heinemann, U. & Behr, J. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy. J. Comp. Neurol. 483, 476–488 (2005).
pubmed: 15700275 doi: 10.1002/cne.20460
Concha, L., Beaulieu, C. & Gross, D. W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann. Neurol. 57, 188–196 (2005).
pubmed: 15562425 doi: 10.1002/ana.20334
Concha, L., Livy, D. J., Beaulieu, C., Wheatley, B. M. & Gross, D. W. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J. Neurosci. 30, 996–1002 (2010).
pubmed: 20089908 pmcid: 6633109 doi: 10.1523/JNEUROSCI.1619-09.2010
Lariviere S, et al. Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome. Epilepsia 61, 1221–1233 (2020).
Sharma, A. K. et al. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol. Pathol. 35, 984–999 (2007).
pubmed: 18098044 doi: 10.1080/01926230701748305
Schindler, K. A., Bialonski, S., Horstmann, M.-T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos: Interdiscip. J. Nonlinear Sci. 18, 033119 (2008).
doi: 10.1063/1.2966112
Voets, N., Bernhardt, B. C., Kim, H., Yoon, U. & Bernasconi, N. Increased temporolimbic cortical folding complexity in temporal lobe epilepsy. Neurology 76, 138–144 (2011).
pubmed: 21148116 doi: 10.1212/WNL.0b013e318205d521
Blümcke, I., Thom, M. & Wiestler, O. D. Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol. 12, 199–211 (2002).
pubmed: 11958375
Blümcke, I. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54, 1315–1329 (2013).
pubmed: 23692496 doi: 10.1111/epi.12220
Galovic M, et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 76, 1230–1239 (2019).
Bernhardt, B. C. et al. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72, 1747–1754 (2009).
pubmed: 19246420 pmcid: 2827310 doi: 10.1212/01.wnl.0000345969.57574.f5
Caciagli, L. et al. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain? Neurology 89, 506–516 (2017).
pubmed: 28687722 pmcid: 5539734 doi: 10.1212/WNL.0000000000004176
Fornito A, Zalesky A, Bullmore E. Fundamentals of brain network analysis. Academic Press (2016).
Blumenfeld, H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2), 7–15 (2003).
pubmed: 12752456 doi: 10.1046/j.1528-1157.44.s.2.2.x
Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter J-M. Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized nonconvulsive epilepsy. In: Generalized epilepsy. Springer (1990).
Danober, L., Deransart, C., Depaulis, A., Vergnes, M. & Marescaux, C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57 (1998).
pubmed: 9602499 doi: 10.1016/S0301-0082(97)00091-9
Gotman, J. et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl Acad. Sci. 102, 15236–15240 (2005).
pubmed: 16217042 pmcid: 1257704 doi: 10.1073/pnas.0504935102
Tondelli, M., Vaudano, A. E., Ruggieri, A. & Meletti, S. Cortical and subcortical brain alterations in juvenile absence epilepsy. NeuroImage: Clin. 12, 306–311 (2016).
doi: 10.1016/j.nicl.2016.07.007
Caciagli, L. et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 142, 2670–2687 (2019).
pubmed: 31365054 pmcid: 6776114 doi: 10.1093/brain/awz215
Marten, F., Rodrigues, S., Benjamin, O., Richardson, M. P. & Terry, J. R. Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 1145–1161 (2009).
doi: 10.1098/rsta.2008.0255
Bernasconi, A. et al. Magnetic resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy. Brain 126, 2447–2454 (2003).
pubmed: 12902313 doi: 10.1093/brain/awg249
McGill, M. L. et al. Functional neuroimaging abnormalities in idiopathic generalized epilepsy. NeuroImage: Clin. 6, 455–462 (2014).
doi: 10.1016/j.nicl.2014.10.008
Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).
pubmed: 23774735 pmcid: 4096801 doi: 10.1038/nrg3457
Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K. & Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PloS one 9, e78644 (2014).
pubmed: 24454679 pmcid: 3894192 doi: 10.1371/journal.pone.0078644
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
pubmed: 19015660 pmcid: 2949280 doi: 10.1038/nrg2484
Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).
pubmed: 18988837 pmcid: 2694957 doi: 10.1126/science.1156409
Brodie, A., Azaria, J. R. & Ofran, Y. How far from the SNP may the causative genes be? Nucleic Acids Res. 44, 6046–6054 (2016).
pubmed: 27269582 pmcid: 5291268 doi: 10.1093/nar/gkw500
Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet., 507 (2018).
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).
doi: 10.1038/nature11247
Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 1–19 (2020).
Aronica, E. & Gorter, J. A. Gene expression profile in temporal lobe epilepsy. Neuroscientist 13, 100–108 (2007).
pubmed: 17404370 doi: 10.1177/1073858406295832
Lee, T.-S. et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol. Med. 13, 1–13 (2007).
pubmed: 17515952 pmcid: 1869627 doi: 10.2119/2006-00079.Lee
Magalhães, P. H., Moraes, H. T., Athie, M. C., Secolin, R. & Lopes-Cendes, I. New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav. 121, 106428 (2021).
pubmed: 31400936 doi: 10.1016/j.yebeh.2019.07.029
Van den Heuvel OA, et al. An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Human Brain Mapp. 43, 23–36 (2022).
Ching CR, et al. What we learn about bipolar disorder from large‐scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Human Brain Mapp. 43, 56–82 (2022).
Hoogman M, et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Human Brain Mapp. 43, 37–55 (2022).
Bas‐Hoogendam JM, et al. ENIGMA‐anxiety working group: Rationale for and organization of large‐scale neuroimaging studies of anxiety disorders. Human Brain Mapp. 43, 83–112 (2022).
Ho TC, et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Human Brain Mapp. 43, 341–351 (2022).
Berg AT, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009.). Wiley Online Library (2010).
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
pubmed: 9931268 doi: 10.1006/nimg.1998.0395
Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 3, e17 (2007).
pubmed: 17274684 pmcid: 1794324 doi: 10.1371/journal.pcbi.0030017
He, Y., Chen, Z. & Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28, 4756–4766 (2008).
pubmed: 18448652 pmcid: 6670444 doi: 10.1523/JNEUROSCI.0141-08.2008
Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).
pubmed: 11690461 doi: 10.1103/PhysRevLett.87.198701
Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife 10, e72129 (2021).
pubmed: 34783653 pmcid: 8660024 doi: 10.7554/eLife.72129
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).
pubmed: 26571460 pmcid: 4700510 doi: 10.1038/nn.4171
Consortium TILAE. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893 (2014).
doi: 10.1016/S1474-4422(14)70171-1
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/s41467-017-01261-5
Váša, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).
pubmed: 29088339 doi: 10.1093/cercor/bhx249
Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat. Methods 18, 698–700 (2021).
pubmed: 34194050 pmcid: 8983056 doi: 10.1038/s41592-021-01186-4
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020).
pubmed: 32585343 doi: 10.1016/j.neuroimage.2020.117038
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 1–10 (2020).
doi: 10.1038/s42003-020-0794-7

Auteurs

Sara Larivière (S)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada. sara.lariviere@mail.mcgill.ca.

Jessica Royer (J)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Raúl Rodríguez-Cruces (R)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Casey Paquola (C)

Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.

Maria Eugenia Caligiuri (ME)

Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy.

Antonio Gambardella (A)

Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy.
Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy.

Luis Concha (L)

Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México.

Simon S Keller (SS)

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
Walton Centre NHS Foundation Trust, Liverpool, UK.

Fernando Cendes (F)

Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.

Clarissa L Yasuda (CL)

Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.

Leonardo Bonilha (L)

Department of Neurology, Emory University, Atlanta, GA, USA.

Ezequiel Gleichgerrcht (E)

Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.

Niels K Focke (NK)

Department of Neurology, University of Medicine Göttingen, Göttingen, Germany.

Martin Domin (M)

Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany.

Felix von Podewills (F)

Department of Neurology, University Medicine Greifswald, Greifswald, Germany.

Soenke Langner (S)

Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany.

Christian Rummel (C)

Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland.

Roland Wiest (R)

Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland.

Pascal Martin (P)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Raviteja Kotikalapudi (R)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Terence J O'Brien (TJ)

Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia.
Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.

Benjamin Sinclair (B)

Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia.
Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.

Lucy Vivash (L)

Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia.
Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.

Patricia M Desmond (PM)

Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.

Elaine Lui (E)

Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.

Anna Elisabetta Vaudano (AE)

Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy.
Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.

Stefano Meletti (S)

Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy.
Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.

Manuela Tondelli (M)

Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.
Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy.

Saud Alhusaini (S)

Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.
Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.

Colin P Doherty (CP)

Department of Neurology, St James' Hospital, Dublin, Ireland.
FutureNeuro SFI Research Centre, Dublin, Ireland.

Gianpiero L Cavalleri (GL)

Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.
FutureNeuro SFI Research Centre, Dublin, Ireland.

Norman Delanty (N)

Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.
FutureNeuro SFI Research Centre, Dublin, Ireland.

Reetta Kälviäinen (R)

Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland.
Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.

Graeme D Jackson (GD)

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.

Magdalena Kowalczyk (M)

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.

Mario Mascalchi (M)

Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy.

Mira Semmelroch (M)

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.

Rhys H Thomas (RH)

Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.

Hamid Soltanian-Zadeh (H)

Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA.

Esmaeil Davoodi-Bojd (E)

Department of Neurology, Henry Ford Health System, Detroit, MI, USA.

Junsong Zhang (J)

Cognitive Science Department, Xiamen University, Xiamen, China.

Gavin P Winston (GP)

Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada.
Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Chalfont Centre for Epilepsy, Bucks, UK.

Aoife Griffin (A)

Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK.

Aditi Singh (A)

Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK.

Vijay K Tiwari (VK)

Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK.

Barbara A K Kreilkamp (BAK)

Department of Neurology, University of Medicine Göttingen, Göttingen, Germany.

Matteo Lenge (M)

Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy.
Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy.

Renzo Guerrini (R)

Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy.

Khalid Hamandi (K)

The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, UK.
Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK.

Sonya Foley (S)

Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK.

Theodor Rüber (T)

Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany.
Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.

Bernd Weber (B)

Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany.

Chantal Depondt (C)

Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.

Julie Absil (J)

Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.

Sarah J A Carr (SJA)

Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Eugenio Abela (E)

Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Mark P Richardson (MP)

Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Orrin Devinsky (O)

Department of Neurology, NYU Grossman School of Medicine, New York, NY, US.

Mariasavina Severino (M)

IRCCS Istituto Giannina Gaslini, Genova, Italy.

Pasquale Striano (P)

IRCCS Istituto Giannina Gaslini, Genova, Italy.
Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.

Domenico Tortora (D)

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.

Erik Kaestner (E)

Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US.

Sean N Hatton (SN)

Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US.

Sjoerd B Vos (SB)

Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Chalfont Centre for Epilepsy, Bucks, UK.
Centre for Medical Image Computing, University College London, London, UK.

Lorenzo Caciagli (L)

Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Chalfont Centre for Epilepsy, Bucks, UK.

John S Duncan (JS)

Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Chalfont Centre for Epilepsy, Bucks, UK.

Christopher D Whelan (CD)

Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.

Paul M Thompson (PM)

Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, US.

Sanjay M Sisodiya (SM)

Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
Chalfont Centre for Epilepsy, Bucks, UK.

Andrea Bernasconi (A)

Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Angelo Labate (A)

Neurology, BIOMORF Dipartment, University of Messina, Messina, Italy.

Carrie R McDonald (CR)

Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US.

Neda Bernasconi (N)

Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Boris C Bernhardt (BC)

Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada. boris.bernhardt@mcgill.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH