Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 07 2022
27 07 2022
Historique:
received:
22
10
2021
accepted:
30
06
2022
entrez:
27
7
2022
pubmed:
28
7
2022
medline:
30
7
2022
Statut:
epublish
Résumé
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.
Identifiants
pubmed: 35896547
doi: 10.1038/s41467-022-31730-5
pii: 10.1038/s41467-022-31730-5
pmc: PMC9329287
doi:
Substances chimiques
Immunoglobulin E
37341-29-0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4320Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB015922
Pays : United States
Organisme : Medical Research Council
ID : MR/M00841X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S00355X/1
Pays : United Kingdom
Organisme : NIBIB NIH HHS
ID : U54 EB020403
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS106957
Pays : United States
Organisme : Medical Research Council
ID : G080212
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : R21 NS107739
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH018399
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS122827
Pays : United States
Organisme : Medical Research Council
ID : MR/K013998/1
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Feigin, V. L. et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).
doi: 10.1016/S1474-4422(18)30499-X
Engel, J. Jr. et al. Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194 (2013).
pubmed: 23406911
pmcid: 4064674
doi: 10.1097/WCO.0b013e32835ee5b8
Lariviere S, et al. Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study. Sci. Adv. 6, 1–13 (2020).
Bernhardt, B. C. et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann. Neurol. 80, 142–153 (2016).
pubmed: 27228409
doi: 10.1002/ana.24691
Concha, L., Kim, H., Bernasconi, A., Bernhardt, B. C. & Bernasconi, N. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology 79, 455–462 (2012).
pubmed: 22815555
pmcid: 3405250
doi: 10.1212/WNL.0b013e31826170b6
Wang, Z. et al. Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology 93, e1112–e1122 (2019).
pubmed: 31405905
pmcid: 6746209
doi: 10.1212/WNL.0000000000008096
Weng, Y. et al. Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Commun. Biol. 3, 1–11 (2020).
doi: 10.1038/s42003-020-0958-5
Labate, A. et al. Voxel-based morphometry of sporadic epileptic patients with mesiotemporal sclerosis. Epilepsia 51, 506–510 (2010).
pubmed: 19780790
doi: 10.1111/j.1528-1167.2009.02310.x
McDonald, C. R. et al. Regional neocortical thinning in mesial temporal lobe epilepsy. Epilepsia 49, 794–803 (2008).
pubmed: 18266751
doi: 10.1111/j.1528-1167.2008.01539.x
Bernhardt, B. C. et al. Thalamo–cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage 46, 373–381 (2009).
pubmed: 19385011
doi: 10.1016/j.neuroimage.2009.01.055
O’Muircheartaigh, J. et al. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain 135, 3635–3644 (2012).
pubmed: 23250883
pmcid: 3525058
doi: 10.1093/brain/aws296
Sisodiya SM, et al. The ENIGMA-Epilepsy working group: Mapping disease from large data sets. Hum. Brain Mapp. 43, 113–128 (2022).
Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).
pubmed: 23531697
pmcid: 4043276
doi: 10.1038/nrn3465
Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci.: Off. J. Soc. Neurosci. 25, 8303–8310 (2005).
doi: 10.1523/JNEUROSCI.0357-05.2005
Gong, G., He, Y., Chen, Z. J. & Evans, A. C. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage 59, 1239–1248 (2012).
pubmed: 21884805
doi: 10.1016/j.neuroimage.2011.08.017
Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci.: Off. J. Soc. Neurosci. 33, 2889–2899 (2013).
doi: 10.1523/JNEUROSCI.3554-12.2013
Zielinski, B. A., Gennatas, E. D., Zhou, J. & Seeley, W. W. Network-level structural covariance in the developing brain. Proc. Natl Acad. Sci. USA 107, 18191–18196 (2010).
pubmed: 20921389
pmcid: 2964249
doi: 10.1073/pnas.1003109107
Khundrakpam BS, et al. Developmental changes in organization of structural brain networks. Cereb. Cortex 23, 2072–2085 (2012).
Lerch, J. P. et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003 (2006).
pubmed: 16624590
doi: 10.1016/j.neuroimage.2006.01.042
Valk, S. L. et al. Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci. Adv. 6, eabb3417 (2020).
pubmed: 32978162
pmcid: 7518868
doi: 10.1126/sciadv.abb3417
Valk SL, et al. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat. Commun. 13, 1–17 (2022).
Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
pubmed: 19190637
doi: 10.1038/nrn2575
Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).
pubmed: 15350243
doi: 10.1016/j.tics.2004.07.008
Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C. & Bernasconi, N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb. Cortex 21, 2147–2157 (2011).
pubmed: 21330467
doi: 10.1093/cercor/bhq291
Yasuda, C. L. et al. Aberrant topological patterns of brain structural network in temporal lobe epilepsy. Epilepsia 56, 1992–2002 (2015).
pubmed: 26530395
doi: 10.1111/epi.13225
Bernhardt, B. C., Bernasconi, N., Hong, S., Dery, S. & Bernasconi, A. Subregional mesiotemporal network topology is altered in temporal lobe epilepsy. Cereb. Cortex 26, 3237–3248 (2016).
pubmed: 26223262
doi: 10.1093/cercor/bhv166
Liao, W. et al. Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy. Brain Connect. 3, 240–254 (2013).
pubmed: 23510272
pmcid: 3685391
doi: 10.1089/brain.2012.0132
Bonilha, L. et al. Neurodevelopmental alterations of large‐scale structural networks in children with new‐onset epilepsy. Hum. brain Mapp. 35, 3661–3672 (2014).
pubmed: 24453089
pmcid: 4107168
doi: 10.1002/hbm.22428
Lee, H. J. & Park, K. M. Structural and functional connectivity in newly diagnosed juvenile myoclonic epilepsy. Acta Neurol. Scand. 139, 469–475 (2019).
pubmed: 30758836
doi: 10.1111/ane.13079
Sone, D. et al. Reduced resilience of brain gray matter networks in idiopathic generalized epilepsy: A graph-theoretical analysis. PloS One 14, e0212494 (2019).
pubmed: 30768622
pmcid: 6377139
doi: 10.1371/journal.pone.0212494
Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).
pubmed: 27845257
doi: 10.1016/j.neuroimage.2016.11.006
Lariviere, S. et al. Microstructure-informed connectomics: enriching large-scale descriptions of healthy and diseased brains. Brain Connect. 9, 113–127 (2019).
pubmed: 30079754
pmcid: 6444904
doi: 10.1089/brain.2018.0587
Consortium TILAE. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun. 9, 1–15 (2018).
Leu, C. et al. Pleiotropy of polygenic factors associated with focal and generalized epilepsy in the general population. PloS One 15, e0232292 (2020).
pubmed: 32343744
pmcid: 7188256
doi: 10.1371/journal.pone.0232292
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553
pmcid: 4243026
doi: 10.1038/nature11405
Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D. Bridging the gap between connectome and transcriptome. Trends Cogn. Sci. 23, 34–50 (2019).
pubmed: 30455082
doi: 10.1016/j.tics.2018.10.005
Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).
pubmed: 29860082
doi: 10.1016/j.neuroimage.2018.05.070
Wei Y, et al. Statistical testing in transcriptomic‐neuroimaging studies: A how‐to and evaluation of methods assessing spatial and gene specificity.). Wiley Online Library (2022).
Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141, 391–408 (2018).
pubmed: 29365066
pmcid: 5837616
doi: 10.1093/brain/awx341
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Chen AA, et al. Removal of scanner effects in covariance improves multivariate pattern analysis in neuroimaging data. bioRxiv, 858415 (2020).
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).
pubmed: 9623998
doi: 10.1038/30918
Bernhardt, B. C., Bonilha, L. & Gross, D. W. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 50, 162–170 (2015).
pubmed: 26159729
doi: 10.1016/j.yebeh.2015.06.005
Lariviere S, et al. The ENIGMA Toolbox: Cross-disorder integration and multiscale neural contextualization of multisite neuroimaging datasets. bioRxiv, (2020).
Allen, A. S. et al. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 16, 135–143 (2017).
doi: 10.1016/S1474-4422(16)30359-3
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
pubmed: 27910877
doi: 10.1038/nrd.2016.230
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444
doi: 10.1038/s41588-018-0269-7
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).
pubmed: 31043756
pmcid: 6956732
doi: 10.1038/s41588-019-0397-8
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
pubmed: 30718901
pmcid: 6522363
doi: 10.1038/s41593-018-0326-7
Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).
pubmed: 27322543
pmcid: 5331903
doi: 10.1038/ng.3598
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
pubmed: 29483656
pmcid: 5918692
doi: 10.1038/s41588-018-0059-2
Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).
pubmed: 30648605
doi: 10.1016/j.neuroimage.2019.01.011
Zhu Y, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362, 1–12 (2018).
Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).
pubmed: 30545854
pmcid: 6413317
doi: 10.1126/science.aat7615
Wannan, C. M. et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am. J. Psychiatry 176, 552–563 (2019).
pubmed: 31164006
doi: 10.1176/appi.ajp.2019.18040380
Bonilha, L. et al. Asymmetrical extra-hippocampal grey matter loss related to hippocampal atrophy in patients with medial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 78, 286–294 (2007).
pubmed: 17012334
doi: 10.1136/jnnp.2006.103994
Bonilha, L. et al. Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia 51, 519–528 (2010).
pubmed: 20163442
pmcid: 2855766
doi: 10.1111/j.1528-1167.2009.02506.x
de Wael, R. V. et al. Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. Proc. Natl Acad. Sci. 115, 10154–10159 (2018).
doi: 10.1073/pnas.1803667115
Van Strien, N., Cappaert, N. & Witter, M. The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat. Rev. Neurosci. 10, 272–282 (2009).
pubmed: 19300446
doi: 10.1038/nrn2614
Knopp, A., Kivi, A., Wozny, C., Heinemann, U. & Behr, J. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy. J. Comp. Neurol. 483, 476–488 (2005).
pubmed: 15700275
doi: 10.1002/cne.20460
Concha, L., Beaulieu, C. & Gross, D. W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann. Neurol. 57, 188–196 (2005).
pubmed: 15562425
doi: 10.1002/ana.20334
Concha, L., Livy, D. J., Beaulieu, C., Wheatley, B. M. & Gross, D. W. In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. J. Neurosci. 30, 996–1002 (2010).
pubmed: 20089908
pmcid: 6633109
doi: 10.1523/JNEUROSCI.1619-09.2010
Lariviere S, et al. Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome. Epilepsia 61, 1221–1233 (2020).
Sharma, A. K. et al. Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol. Pathol. 35, 984–999 (2007).
pubmed: 18098044
doi: 10.1080/01926230701748305
Schindler, K. A., Bialonski, S., Horstmann, M.-T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos: Interdiscip. J. Nonlinear Sci. 18, 033119 (2008).
doi: 10.1063/1.2966112
Voets, N., Bernhardt, B. C., Kim, H., Yoon, U. & Bernasconi, N. Increased temporolimbic cortical folding complexity in temporal lobe epilepsy. Neurology 76, 138–144 (2011).
pubmed: 21148116
doi: 10.1212/WNL.0b013e318205d521
Blümcke, I., Thom, M. & Wiestler, O. D. Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol. 12, 199–211 (2002).
pubmed: 11958375
Blümcke, I. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54, 1315–1329 (2013).
pubmed: 23692496
doi: 10.1111/epi.12220
Galovic M, et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 76, 1230–1239 (2019).
Bernhardt, B. C. et al. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72, 1747–1754 (2009).
pubmed: 19246420
pmcid: 2827310
doi: 10.1212/01.wnl.0000345969.57574.f5
Caciagli, L. et al. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain? Neurology 89, 506–516 (2017).
pubmed: 28687722
pmcid: 5539734
doi: 10.1212/WNL.0000000000004176
Fornito A, Zalesky A, Bullmore E. Fundamentals of brain network analysis. Academic Press (2016).
Blumenfeld, H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2), 7–15 (2003).
pubmed: 12752456
doi: 10.1046/j.1528-1157.44.s.2.2.x
Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter J-M. Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized nonconvulsive epilepsy. In: Generalized epilepsy. Springer (1990).
Danober, L., Deransart, C., Depaulis, A., Vergnes, M. & Marescaux, C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57 (1998).
pubmed: 9602499
doi: 10.1016/S0301-0082(97)00091-9
Gotman, J. et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl Acad. Sci. 102, 15236–15240 (2005).
pubmed: 16217042
pmcid: 1257704
doi: 10.1073/pnas.0504935102
Tondelli, M., Vaudano, A. E., Ruggieri, A. & Meletti, S. Cortical and subcortical brain alterations in juvenile absence epilepsy. NeuroImage: Clin. 12, 306–311 (2016).
doi: 10.1016/j.nicl.2016.07.007
Caciagli, L. et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 142, 2670–2687 (2019).
pubmed: 31365054
pmcid: 6776114
doi: 10.1093/brain/awz215
Marten, F., Rodrigues, S., Benjamin, O., Richardson, M. P. & Terry, J. R. Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 1145–1161 (2009).
doi: 10.1098/rsta.2008.0255
Bernasconi, A. et al. Magnetic resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy. Brain 126, 2447–2454 (2003).
pubmed: 12902313
doi: 10.1093/brain/awg249
McGill, M. L. et al. Functional neuroimaging abnormalities in idiopathic generalized epilepsy. NeuroImage: Clin. 6, 455–462 (2014).
doi: 10.1016/j.nicl.2014.10.008
Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).
pubmed: 23774735
pmcid: 4096801
doi: 10.1038/nrg3457
Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K. & Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PloS one 9, e78644 (2014).
pubmed: 24454679
pmcid: 3894192
doi: 10.1371/journal.pone.0078644
Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
pubmed: 19015660
pmcid: 2949280
doi: 10.1038/nrg2484
Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).
pubmed: 18988837
pmcid: 2694957
doi: 10.1126/science.1156409
Brodie, A., Azaria, J. R. & Ofran, Y. How far from the SNP may the causative genes be? Nucleic Acids Res. 44, 6046–6054 (2016).
pubmed: 27269582
pmcid: 5291268
doi: 10.1093/nar/gkw500
Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front. Genet., 507 (2018).
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).
doi: 10.1038/nature11247
Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 1–19 (2020).
Aronica, E. & Gorter, J. A. Gene expression profile in temporal lobe epilepsy. Neuroscientist 13, 100–108 (2007).
pubmed: 17404370
doi: 10.1177/1073858406295832
Lee, T.-S. et al. Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol. Med. 13, 1–13 (2007).
pubmed: 17515952
pmcid: 1869627
doi: 10.2119/2006-00079.Lee
Magalhães, P. H., Moraes, H. T., Athie, M. C., Secolin, R. & Lopes-Cendes, I. New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav. 121, 106428 (2021).
pubmed: 31400936
doi: 10.1016/j.yebeh.2019.07.029
Van den Heuvel OA, et al. An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Human Brain Mapp. 43, 23–36 (2022).
Ching CR, et al. What we learn about bipolar disorder from large‐scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Human Brain Mapp. 43, 56–82 (2022).
Hoogman M, et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Human Brain Mapp. 43, 37–55 (2022).
Bas‐Hoogendam JM, et al. ENIGMA‐anxiety working group: Rationale for and organization of large‐scale neuroimaging studies of anxiety disorders. Human Brain Mapp. 43, 83–112 (2022).
Ho TC, et al. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Human Brain Mapp. 43, 341–351 (2022).
Berg AT, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009.). Wiley Online Library (2010).
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).
pubmed: 9931268
doi: 10.1006/nimg.1998.0395
Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 3, e17 (2007).
pubmed: 17274684
pmcid: 1794324
doi: 10.1371/journal.pcbi.0030017
He, Y., Chen, Z. & Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28, 4756–4766 (2008).
pubmed: 18448652
pmcid: 6670444
doi: 10.1523/JNEUROSCI.0141-08.2008
Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).
pubmed: 11690461
doi: 10.1103/PhysRevLett.87.198701
Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife 10, e72129 (2021).
pubmed: 34783653
pmcid: 8660024
doi: 10.7554/eLife.72129
Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).
pubmed: 26571460
pmcid: 4700510
doi: 10.1038/nn.4171
Consortium TILAE. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893 (2014).
doi: 10.1016/S1474-4422(14)70171-1
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/s41467-017-01261-5
Váša, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).
pubmed: 29088339
doi: 10.1093/cercor/bhx249
Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat. Methods 18, 698–700 (2021).
pubmed: 34194050
pmcid: 8983056
doi: 10.1038/s41592-021-01186-4
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020).
pubmed: 32585343
doi: 10.1016/j.neuroimage.2020.117038
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 1–10 (2020).
doi: 10.1038/s42003-020-0794-7