Recent developments in cell shipping methods.

alternative methods ambient temperature cell culture cell death cell shipping cell transport preservation

Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
11 2022
Historique:
revised: 09 06 2022
received: 21 03 2021
accepted: 17 07 2022
pubmed: 29 7 2022
medline: 12 10 2022
entrez: 28 7 2022
Statut: ppublish

Résumé

As opposed to remarkable advances in the cell therapy industry, research reveal inexplicable difficulties associated with preserving and post-thawing cell death. Post cryopreservation apoptosis is a common occurrence that has attracted the attention of scientists to use apoptosis inhibitors. Transporting cells without compromising their survival and function is crucial for any experimental cell-based therapy. Preservation of cells allows the safe transportation of cells between distances and improves quality control testing in clinical and research applications. The vitality of transported cells is used to evaluate the efficacy of transportation strategies. For many decades, the conventional global methods of cell transfer were not only expensive but also challenging and had adverse effects. The first determination of some projects is optimizing cell survival after cryopreservation. The new generation of cryopreservation science wishes to find appropriate and alternative methods for cell transportation to ship viable cells at an ambient temperature without dry ice or in media-filled flasks. The diversity of cell therapies demands new cell shipping methodologies and cryoprotectants. In this review, we tried to summarize novel improved cryopreservation methods and alternatives to cryopreservation with safe and viable cell shipping at ambient temperature, including dry preservation, hypothermic preservation, gel-based methods, encapsulation methods, fibrin microbeads, and osmolyte solution compositions.

Identifiants

pubmed: 35898166
doi: 10.1002/bit.28197
doi:

Substances chimiques

Cryoprotective Agents 0
Dry Ice 0
Fibrin 9001-31-4

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2985-3006

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Ahmad, E., Fatima, M. T., Hoque, M., Owais, M., & Saleemuddin, M. (2015). Fibrin matrices: The versatile therapeutic delivery systems. International Journal of Biological Macromolecules, 81, 121-136. https://doi.org/10.1016/j.ijbiomac.2015.07.054
Armitage, W. J. (1987). Cryopreservation of animal cells. Symposia of the Society for Experimental Biology, 41, 379-393.
Azambuja, R. M., Kraemer, D. C., & Westhusin, M. E. (1998). Effect of low temperatures on in-vitro matured bovine oocytes. Theriogenology, 49(6), 1155-1164. https://doi.org/10.1016/S0093-691X(98)00063-6
Baiocchini, A., Montaldo, C., Conigliaro, A., Grimaldi, A., Correani, V., Mura, F., Ciccosanti, F., Rotiroti, N., Brenna, A., Montalbano, M., D'Offizi, G., Capobianchi, M. R., Alessandro, R., Piacentini, M., Schininà, M. E., Maras, B., Del Nonno, F., Tripodi, M., & Mancone, C. (2016). Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One, 11(3), e0151736.
Bakhshpour, M., Idil, N., Perçin, I., & Denizli, A. (2019). Biomedical applications of polymeric cryogels. Applied Sciences, 9(3), 553. https://doi.org/10.3390/app9030553
Barun, S. (2015). A review on applications & advantages of cryopreservation in different fields of science. The Beats of Natural Sciences, 2, 1-6.
 Baust, J. M., Van Buskirk, R., & Baust, J. G. (2003). Normothermic, hypothermic and cryopreservation maintenance and storage of cells, tissues and organs in gel-based media. (U.S. Patent No. 6,632,666). U.S. Patent and Trademark Office.
Beattie, G. M., Crowe, J. H., Lopez, A. D., Cirulli, V., Ricordi, C., & Hayek, A. (1997). Trehalose: A cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes, 46(3), 519-523. https://doi.org/10.2337/diab.46.3.519
Ben-Ari, A., Rivkin, R., Frishman, M., Gaberman, E., Levdansky, L., & Gorodetsky, R. (2009). Isolation and implantation of bone marrow-derived mesenchymal stem cells with fibrin micro beads to repair a critical-size bone defect in mice. Tissue Engineering. Part A, 15(9), 2537-2546. https://doi.org/10.1089/ten.tea.2008.0567
Bissoyi, A., Nayak, B., Pramanik, K., & Sarangi, S. K. (2014). Targeting cryopreservation-induced cell death: A review. Biopreservation and Biobanking, 12(1), 23-34. https://doi.org/10.1089/bio.2013.0032
von Bomhard, A., Elsässer, A., Ritschl, L. M., Schwarz, S., & Rotter, N. (2016). Cryopreservation of endothelial cells in various cryoprotective agents and media-vitrification versus slow freezing methods. PLoS One, 11(2), e0149660. https://doi.org/10.1371/journal.pone.0149660
Brown, I. R. (1990). Induction of heat shock (stress) genes in the mammalian brain by hyperthermia and other traumatic events: A current perspective. Journal of Neuroscience Research, 27(3), 247-255. https://doi.org/10.1002/jnr.490270302
Campos-Chillòn, L. F., Walker, D. J., De La Torre-Sanchez, J. F., & Seidel, G. E. (2006). In vitro assessment of a direct transfer vitrification procedure for bovine embryos. Theriogenology, 65(6), 1200-1214. https://doi.org/10.1016/j.theriogenology.2005.07.015
Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine, 30(10), 1-10.
Chakrabarti, R., & Schutt, C. E. (2001). The enhancement of PCR amplification by low molecular-weight sulfones. Gene, 274(1-2), 293-298. https://doi.org/10.1016/S0378-1119(01)00621-7
Chen, B., Wright, B., Sahoo, R., & Connon, C. J. (2013). A novel alternative to cryopreservation for the short-term storage of stem cells for use in cell therapy using alginate encapsulation. Tissue Engineering Part C: Methods, 19(7), 568-576.
Chen, K. L., Mylon, S. E., & Elimelech, M. (2007). Enhanced aggregation of Alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir, 23(11), 5920-5928. https://doi.org/10.1021/la063744k
Chen, T., Acker, J. P., Eroglu, A., Cheley, S., Bayley, H., Fowler, A., & Toner, M. (2001). Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology, 43(2), 168-181. https://doi.org/10.1006/cryo.2001.2360
Choi, Y. H., & Chang, Y. J. (2003). The influence of cooling rate, developmental stage, and the addition of sugar on the cryopreservation of larvae of the pearl oyster Pinctada fucata martensii. Cryobiology, 46(2), 190-193. https://doi.org/10.1016/S0011-2240(03)00016-6
Choudhery, M. S., Badowski, M., Muise, A., & Harris, D. T. (2015). Effect of mild heat stress on the proliferative and differentiative ability of human mesenchymal stromal cells. Cytotherapy, 17(4), 359-368. https://doi.org/10.1016/j.jcyt.2014.11.003
Chung, H. J., & Park, T. G. (2009). Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Engineering. Part A, 15(6), 1391-1400. https://doi.org/10.1089/ten.tea.2008.0344
Cobo, F., Stacey, G. N., Hunt, C., Cabrera, C., Nieto, A., Montes, R., Cortés, J. L., Catalina, P., Barnie, A., & Concha Á. (2005). Microbiological control in stem cell banks: Approaches to standardisation. Applied Microbiology and Biotechnology, 68(4), 456-466. https://doi.org/10.1007/s00253-005-0062-2
Coopman, K. (2013). Alternatives to cryopreservation for the short and long-term storage of mammalian cells. In: A. Colvert, & H. Coty (Eds.),  Cryopreservation: Technologies, applications and risks/outcomes (pp. 91-108). Nova Science Publishers.
Courtenay, E. S., Capp, M. W., Anderson, C. F., & Record, M. T. (2000). Vapor pressure osmometry studies of osmolyte−protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of ‘osmotic stress’ experiments in vitro. Biochemistry, 39(15), 4455-4471. https://doi.org/10.1021/bi992887l
Criado, E., Albani, E., Novara, P. V., Smeraldi, A., Cesana, A., Parini, V., & Levi-Setti, P. E. (2011). Human oocyte ultravitrification with a low concentration of cryoprotectants by ultrafast cooling: A new protocol. Fertility and Sterility, 95(3), 1101-1103. https://doi.org/10.1016/j.fertnstert.2010.11.015
Crowe, J. H. (2005). Stabilization of dry mammalian cells: Lessons from nature. Integrative and Comparative Biology, 45(5), 810-820. https://doi.org/10.1093/icb/45.5.810
Crowe, J. H., Tablin, F., Wolkers, W. F., Gousset, K., Tsvetkova, N. M., & Ricker, J. (2003). Stabilization of membranes in human platelets freeze-dried with trehalose. Chemistry and Physics of Lipids, 122(1-2), 41-52. https://doi.org/10.1016/S0009-3084(02)00177-9
Daei-farshbaf, N., Ardeshirylajimi, A., Seyedjafari, E., Piryaei, A., Fathabady, F. F., Hedayati, M., Salehi, M., Soleimani, M., Nazarian, H., Moradi, S.-L., & Norouzian, M. (2014). Bioceramic-Collagen scaffolds loaded with human Adipose-tissue derived stem cells for bone tissue engineering. Molecular Biology Reports, 41(2), 741-749. https://doi.org/10.1007/s11033-013-2913-8
De Vries, E. G. E., Vellenga, E., Kluin-Nelemans, J. C., & Mulder, N. H. (2004). The happy destiny of frozen haematopoietic stem cells: From immature stem cells to mature applications. European Journal of Cancer, 40(13), 1987-1992. https://doi.org/10.1016/j.ejca.2003.11.040
Di, G., Wang, J., Liu, M., Wu, C. T., Han, Y., & Duan, H. (2012). Development and evaluation of a trehalose-contained solution formula to preserve HUC-MSCs at 4°C. Journal of Cellular Physiology, 227(3), 879-884. https://doi.org/10.1002/jcp.23066
Ebertz, S. L., & McGann, L. E. (2004). Cryoinjury in endothelial cell monolayers. Cryobiology, 49(1), 37-44. https://doi.org/10.1016/j.cryobiol.2004.04.003
Ehrenreich, M., & Ruszczak, Z. (2006). Update on tissue-engineered biological dressings. Tissue Engineering, 12(9), 2407-2424. https://doi.org/10.1089/ten.2006.12.2407
El Assal, R., Abou-Elkacem, L., Tocchio, A., Pasley, S., Matosevic, S., Kaplan, D. L., Zylberberg, C., & Demirci, U. (2019). Bioinspired preservation of natural killer cells for cancer immunotherapy. Advanced Science, 6(6), 1802045. https://doi.org/10.1002/advs.201802045
El Assal, R., Guven, S., Gurkan, U. A., Gozen, I., Shafiee, H., Dalbeyler, S., Abdalla, N., Thomas, G., Fuld, W., Illigens, B. M. W., Estanislau, J., Khoory, J., Kaufman, R., Zylberberg, C., Lindeman, N., Wen, Q., Ghiran, I., & Demirci, U. (2014). Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Advanced Materials, 26(33), 5815-5822. https://doi.org/10.1002/adma.201400941
Erdag, G., Eroglu, A., Morgan, J. R., & Toner, M. (2002). Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology, 44(3), 218-228. https://doi.org/10.1016/S0011-2240(02)00023-8
Eroglu, A., Toner, M., & Toth, T. L. (2002). Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertility and Sterility, 77(1), 152-158. https://doi.org/10.1016/S0015-0282(01)02959-4
Eroglu, A., Russo, M. J., Bieganski, R., Fowler, A., Cheley, S., Bayley, H., & Toner, M. (2000). Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nature Biotechnology, 18(2), 163-67. https://doi.org/10.1038/72608
Esfandiarei, M., Boroomand, S., Suarez, A., Si, X., Rahmani, M., & McManus, B. (2007). Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a Phosphatidylinositol-3 kinase/protein kinase b-dependent pathway to improve host cell viability. Cellular Microbiology, 9(10), 2358-2371. https://doi.org/10.1111/j.1462-5822.2007.00964.x
Fan, W.-X., Ma, X. H., Ge, D., Liu, T. Q., & Cui, Z.-F. (2009). Cryoprotectants for the vitrification of corneal endothelial cells. Cryobiology, 58(1), 28-36. https://doi.org/10.1016/j.cryobiol.2008.10.124
Gao, D., & Critser, J. K. (2000). Mechanisms of cryoinjury in living cells. ILAR Journal, 41(4), 187-196. https://doi.org/10.1093/ilar.41.4.187
Gorodetsky, R., Levdansky, L., Gaberman, E., Gurevitch, O., Lubzens, E., & McBride, W. H. (2011). Fibrin microbeads loaded with mesenchymal cells support their long-term survival while sealed at room temperature. Tissue Engineering Part C: Methods, 17(7), 745-755. https://doi.org/10.1089/ten.tec.2010.0644
Gorodetsky, R., An, J., Levdansky, L., Vexler, A., Berman, E., Clark, R. A. F., Gailit, J., & Marx, G. (1999). Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound Healing. Journal of Investigative Dermatology, 112(6), 866-72. https://doi.org/10.1046/j.1523-1747.1999.00600.x
Grein, T. A., Freimark, D., Weber, C., Hudel, K., Wallrapp, C., & Czermak, P. (2010). Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells. The International Journal of Artificial Organs, 33(6), 370-380. https://doi.org/10.1177/039139881003300605
Hanna, J., & Hubel, A. (2009). Preservation of stem cells. Organogenesis, 5(3), 134-137. https://doi.org/10.4161/org.5.3.9585
Hara, J., Tottori, J., Anders, M., Dadhwal, S., Asuri, P., & Mobed-Miremadi, M. (2017). Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 609-616. https://doi.org/10.3109/21691401.2016.1167698
He, X., Park, E. Y. H., Fowler, A., Yarmush, M. L., & Toner, M. (2008). Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: A study using murine embryonic stem cells. Cryobiology, 56(3), 223-232. https://doi.org/10.1016/j.cryobiol.2008.03.005
Hegner, B., Weber, M., Dragun, D., & Schulze-Lohoff, E. (2005). Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. Journal of Hypertension, 23(6), 1191-1202. https://doi.org/10.1097/01.hjh.0000170382.31085.5d
Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Rufaihah, A. J., Yang, Z., Bay, B. H., Ge, Z., Ouyang, H. W., Lee, E. H., & Cao, T. (2006). Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. Journal of Biomedical Science, 13(3), 433-445. https://doi.org/10.1007/s11373-005-9051-9
Heo, Y. S., Nagrath, S., Moore, A. L., Zeinali, M., Irimia, D., Stott, S. L., Toth, T. L., & Toner, M. (2015). Universal' vitrification of cells by ultra-fast cooling. Technology, 3(1), 64-71. https://doi.org/10.1142/S2339547815500053
Hunt, C. J. (2007). The banking and cryopreservation of human embryonic stem cells. Transfusion Medicine and Hemotherapy, 34(4), 293-304. https://doi.org/10.1159/000104458
Jain, M., Rajan, R., Hyon, S. H., & Matsumura, K. (2014). Hydrogelation of Dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomaterials Science, 2(3), 308-317. https://doi.org/10.1039/C3BM60261C
Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12-18. https://doi.org/10.1016/j.imr.2016.12.001
Janz, F. L., Debes, A. A., Cavaglieri, R. C., Duarte, S. A., Romão, C. M., Morón, A. F., Zugaib, M., & Bydlowski, S. P. (2012). Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. Journal of Biomedicine and Biotechnology, 2012, 1-10. https://doi.org/10.1155/2012/649353
Jenkins, E. C., Ye, L., & Silverman, W. P. (2012). Does the cryogenic freezing process cause shorter telomeres? Cryobiology, 65(1), 72-73. https://doi.org/10.1016/j.cryobiol.2012.03.005
Ji, L., de Pablo, J. J., & Palecek, S. P. (2004). Cryopreservation of adherent human embryonic stem cells. Biotechnology and Bioengineering, 88(3), 299-312. https://doi.org/10.1002/bit.20243
Jin, B., Kusanagi, K., Ueda, M., Valdez, D. M., Seki, S., Edashige, K., & Kasai, M. (2008). Formation of extracellular and intracellular ice during warming of vitrified mouse morulae and its effect on embryo survival. Cryobiology, 56(3), 233-240. https://doi.org/10.1016/j.cryobiol.2008.03.004
Kang, S.-W., Seo, S.-W., Choi, C. Y., & Kim, B.-S. (2008). Porous poly (Lactic-Co-Glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering. Tissue Engineering Part C: Methods, 14(1), 25-34. https://doi.org/10.1089/tec.2007.0290
Karlsson, J. O. M., & Toner, M. (1996). Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials, 17(3), 243-256. https://doi.org/10.1016/0142-9612(96)85562-1
Katenz, E., Vondran, F. W. R., Schwartlander, R., Pless, G., Gong, X., Cheng, X., Neuhaus, P., & Sauer, I. M. (2007). Cryopreservation of primary human hepatocytes: The benefit of trehalose as an additional cryoprotective agent. Liver Transplantation, 13(1), 38-45. https://doi.org/10.1002/lt.20921
Katsen-Globa, A., Meiser, I., Petrenko, Y. A., Ivanov, R. V., Lozinsky, V. I., Zimmermann, H., & Petrenko, A. Y. (2014). Towards ready-to-use 3-D scaffolds for regenerative medicine: Adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within Alginate-Gelatin cryogel scaffolds. Journal of Materials Science. Materials in medicine, 25(3), 857-871. https://doi.org/10.1007/s10856-013-5108-x
Kaushik, S., & Kaur, J. (2005). Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats. Stress, 8(3), 191-197. https://doi.org/10.1080/10253890500245953
Khan, R., & Khan, M. (2013). Use of collagen as a biomaterial: An update. Journal of Indian Society of Periodontology, 17(4), 539-542. https://doi.org/10.4103/0972-124X.118333
Kim, S. J., Park, J. H., Lee, J. E., Kim, J. M., Lee, J. B., Moon, S. Y., Roh, S. I., Kim, C. G., & Yoon, H. S. (2004). Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells, 22(6), 950-961. https://doi.org/10.1634/stemcells.22-6-950
Kumari, J., & Kumar, A. (2017). Development of polymer based cryogel matrix for transportation and storage of mammalian cells. Scientific Reports, 7, 41551. https://doi.org/10.1038/srep41551
Kuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive BioMedicine Online, 11(3), 300-308. https://doi.org/10.1016/S1472-6483(10)60837-1
Lawson, A., Ahmad, H., & Sambanis, A. (2011). Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology, 62(2), 115-122. https://doi.org/10.1016/j.cryobiol.2011.01.012
Lee, C. H., Singla, A., & Lee, Y. (2001). Biomedical applications of collagen. International Journal of Pharmaceutics, 221(1-2), 1-22. https://doi.org/10.1016/S0378-5173(01)00691-3
Lee, H. J., Elmoazzen, H., Wright, D. L., Biggers, J., Rueda, B. R., Heo, Y. S., Toner, M., & Toth, T. L. (2009). Ultra-rapid vitrification of oocytes in low cryoprotectant concentration using quart capillary. Fertility and Sterility, 92(3), S71. https://doi.org/10.1016/j.fertnstert.2009.07.274
Lee, Y.-A., Kim, Y.-H., Kim, B.-J., Kim, B.-G., Kim, K.-J., Auh, J.-H., Schmidt, J. A., & Ryu, B.-Y. (2013). Cryopreservation in trehalose preserves functional capacity of murine spermatogonial stem cells. PLoS One, 8(1), e54889. https://doi.org/10.1371/journal.pone.0054889
Li, A. P. (2007). Human hepatocytes: Isolation, cryopreservation and applications in drug development. Chemico-Biological Interactions, 168(1), 16-29. https://doi.org/10.1016/j.cbi.2007.01.001
Li, Y., Si, W., Zhang, X., Dinnyes, A., & Ji, W. (2003). Effect of amino acids on cryopreservation of cynomolgus monkey (Macaca Fascicularis) sperm. American Journal of Primatology, 59(4), 159-165. https://doi.org/10.1002/ajp.10073
Linnebacher, M., Maletzki, C., Ostwald, C., Klier, U., Krohn, M., Klar, E., & Prall, F. (2010). Cryopreservation of human colorectal carcinomas prior to xenografting. BMC Cancer, 10(1), 362. https://doi.org/10.1186/1471-2407-10-362
Liu, M., Zhang, X., Guo, H., Zhu, Y., Wen, C., Sui, X., Yang, J., & Zhang, L. (2019). Dimethyl sulfoxide-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers. Biomacromolecules, 20(10), 3980-3988.
Malpique, R., Osório, L. M., Ferreira, D. S., Ehrhart, F., Brito, C., Zimmermann, H., & Alves, P. M. (2010). Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Engineering Part C: Methods, 16(5), 965-977. https://doi.org/10.1089/ten.tec.2009.0660
Martinetti, D., Colarossi, C., Buccheri, S., Denti, G., Memeo, L., & Vicari, L. (2017). Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomedical Reports, 6(3), 314-318. https://doi.org/10.3892/br.2017.859
McGann, L. E. (1978). Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology, 15(4), 382-390. https://doi.org/10.1016/0011-2240(78)90056-1
Meryman, H. T. (2007). Cryopreservation of living cells: Principles and practice. Transfusion, 47(5), 935-945. https://doi.org/10.1111/j.1537-2995.2007.01212.x
Miyamoto, Y., Enosawa, S., Takeuchi, T., & Takezawa, T. (2009). Cryopreservation in situ of cell monolayers on collagen vitrigel membrane culture substrata: Ready-to-Use preparation of primary hepatocytes and ES cells. Cell Transplantation, 18(5-6), 619-626. https://doi.org/10.1177/096368970901805-618
Miyamoto, Y., Ikeuchi, M., Noguchi, H., & Hayashi, S. (2018). Long-term cryopreservation of human and other mammalian cells at −80° C for 8 years. Cell Medicine, 10, 2155179017733148. https://doi.org/10.1177/2155179017733148
Mørch, Ý. A., Donati, I., Strand, B. L., & Skjåk-Braek, G. (2006). Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 7(5), 1471-1480. https://doi.org/10.1021/bm060010d
Morris, G. J., Goodrich, M., Acton, E., & Fonseca, F. (2006). The high viscosity encountered during freezing in glycerol solutions: Effects on cryopreservation. Cryobiology, 52(3), 323-334. https://doi.org/10.1016/j.cryobiol.2006.01.003
Motta, J. P. R., Paraguassú-Braga, F. H., Bouzas, L. F., & Porto, L. C. (2014). Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology, 68(3), 343-348. https://doi.org/10.1016/j.cryobiol.2014.04.007
Moussa, M., Dumont, F., Perrier-Cornet, J.-M., & Gervais, P. (2008). Cell inactivation and membrane damage after long-term treatments at sub-zero temperature in the supercooled and frozen states. Biotechnology and Bioengineering, 101(6), 1245-1255. https://doi.org/10.1002/bit.21981
Nema, R., & Khare, S. (2012). An animal cell culture: Advance technology for modern research. Advances in Bioscience and Biotechnology, 3(3), 219-226. https://doi.org/10.4236/abb.2012.33030
Nienow, A. W., Hewitt, C. J., Heathman, T. R. J., Glyn, V. A. M., Fonte, G. N., Hanga, M. P., Coopman, K., & Rafiq, Q. A. (2016). Agitation conditions for the culture and detachment of HMSCs from microcarriers in multiple bioreactor platforms. Biochemical Engineering Journal, 108, 24-29. https://doi.org/10.1016/j.bej.2015.08.003
Nomura, M., Muramoto, Y., Yasuda, S., Takabe, T., & Kishitani, S. (1995). The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica, 83(3), 247-250. https://doi.org/10.1007/BF01678137
Park, J. S., Yang, H. N., Woo, D. G., Jeon, S. Y., & Park, K.-H. (2011). The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres. Biomaterials, 32(1), 28-38. https://doi.org/10.1016/j.biomaterials.2010.08.088
Pi, C.-H., Yu, G., Petersen, A., & Hubel, A. (2018). Characterizing the ‘sweet spot’ for the preservation of a T-cell line using osmolytes. Scientific Reports, 8(1), 1-13.
Pi, C.-H., Yu, G., Dosa, P. I., & Hubel, A. (2019). Characterizing modes of action and interaction for multicomponent osmolyte solutions on Jurkat cells. Biotechnology and Bioengineering, 116(3), 631-643. https://doi.org/10.1002/bit.26880
Pi, C.-H., Hornberger, K., Dosa, P., & Hubel, A. (2020). Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-Free cryoprotectants. Cytotherapy, 22(5), 291-300.
Place, E. S., Rojo, L., Gentleman, E., Sardinha, J. P., & Stevens, M. M. (2011). Strontium-and zinc-alginate hydrogels for bone tissue engineering. Tissue Engineering. Part A, 17(21-22), 2713-2722. https://doi.org/10.1089/ten.tea.2011.0059
Pu, L., Cui, X., Fink, B., Cibull, M., & Gao, D. (2005). Cryopreservation of adipose tissues: The role of trehalose. Aesthetic Surgery Journal, 25(2), 126-131. https://doi.org/10.1016/j.asj.2005.01.003
Rajangam, T., & An, S. S. A. (2013). Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International Journal of Nanomedicine, 8, 3641.
Ranucci, C. S., Kumar, A., Batra, S. P., & Moghe, P. V. (2000). Control of hepatocyte function on collagen foams: Sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials, 21(8), 783-793. https://doi.org/10.1016/S0142-9612(99)00238-0
Reddig, P. J., & Juliano, R. L. (2005). Clinging to life: Cell to matrix adhesion and cell survival. Cancer and Metastasis Reviews, 24(3), 425-439. https://doi.org/10.1007/s10555-005-5134-3
Rubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of Placental/Umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10119-10122. https://doi.org/10.1073/pnas.92.22.10119
Rudolph, A. S., & Crowe, J. H. (1985). Membrane stabilization during freezing: The role of two natural cryoprotectants, trehalose and proline. Cryobiology, 22(4), 367-377. https://doi.org/10.1016/0011-2240(85)90184-1
Ruoß, M., Häussling, V., Schügner, F., Damink, L. O., Lee, S., Ge, L., Ehnert, S., & Nussler, A. (2018). A standardized collagen-based scaffold improves human hepatocyte shipment and allows metabolic studies over 10 days. Bioengineering, 5(4), 86. https://doi.org/10.3390/bioengineering5040086
Stewart, S., & He, X. (2018). Intracellular delivery of trehalose for cell banking. Langmuir, 35(23), 7414-7422.
Sarkar, J., & Kumar, A. (2016). Thermo-responsive polymer aided spheroid culture in cryogel based platform for high throughput drug screening. The Analyst, 141(8), 2553-2567. https://doi.org/10.1039/C6AN00356G
Satpathy, G. R., Török, Z., Bali, R., Dwyre, D. M., Little, E., Walker, N. J., Tablin, F., Crowe, J. H., & Tsvetkova, N. M. (2004). Loading red blood cells with trehalose: A step towards biostabilization. Cryobiology, 49(2), 123-136. https://doi.org/10.1016/j.cryobiol.2004.06.001
Scheinkönig, C., Kappicht, S., Kolb, H.-J., & Schleuning, M. (2004). Adoption of long-term cultures to evaluate the cryoprotective potential of trehalose for freezing hematopoietic stem cells. Bone Marrow Transplantation, 34(6), 531-536. https://doi.org/10.1038/sj.bmt.1704631
Schoenhard, J. A., & Hatzopoulos, A. K. (2010). Stem cell therapy: Pieces of the puzzle. Journal of Cardiovascular Translational Research, 3(1), 49-60. https://doi.org/10.1007/s12265-009-9148-z
Schoof, H., Apel, J., Heschel, I., & Rau, G. (2001). Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 58(4), 352-357. https://doi.org/10.1002/jbm.1028
Scott, K. L., Lecak, J., & Acker, J. P. (2005). Biopreservation of red blood cells: Past, present, and future. Transfusion Medicine Reviews, 19(2), 127-142. https://doi.org/10.1016/j.tmrv.2004.11.004
Seo, J. M., Sohn, M. Y., Suh, J. S., Atala, A., Yoo, J. J., & Shon, Y.-H. (2011). Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology, 62(3), 167-173. https://doi.org/10.1016/j.cryobiol.2011.02.003
Serra, M., Cláudia, C., Malpique, R., Brito, C., Jensen, J., Bjorquist, P., Carrondo, M. J. T., & Alves, P. M. (2011). Microencapsulation technology: A powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 6(8), e23212.
Shanina, I. V., Kravchenko, L. P., Fuller, B. J., & Grischenko, V. I. (2000). A comparison of a sucrose-based solution with other preservation media for cold storage of isolated hepatocytes. Cryobiology, 41(4), 315-318. https://doi.org/10.1006/cryo.2000.2286
Shao, Q., & Jiang, S. (2015). Molecular understanding and design of zwitterionic materials. Advanced Materials, 27(1), 15-26. https://doi.org/10.1002/adma.201404059
Sharma, S. D. (2005). Cryopreservation of somatic embryos-An overview. Biotechnology, 4(1), 47-55.
Shimony, N., Gorodetsky, R., Marx, G., Gal, D., Rivkin, R., Ben-Ari, A., Landsman, A., & Haviv, Y. S. (2006). Fibrin microbeads (FMB) as a 3D platform for kidney gene and cell therapy. Kidney International, 69(3), 625-633. https://doi.org/10.1038/sj.ki.5000099
Stacey, G. N., & Masters, J. R. (2008). Cryopreservation and banking of mammalian cell lines. Nature Protocols, 3(12), 1981-1989. https://doi.org/10.1038/nprot.2008.190
Stacey, G. N., Connon, C. J., Coopman, K., Dickson, A. J., Fuller, B., Hunt, C. J., Kemp, P., Kerby, J., Man, J., Matejtschuk, P., Moore, H., Morris, J., Oreffo, R. O., Slater, N., Ward, S., Wiggins, C., & Zimmermann, H. (2017). Preservation and stability of cell therapy products: Recommendations from an expert workshop. Regenerative Medicine, 12(5), 553-564. https://doi.org/10.2217/rme-2017-0073
Stefansson, S., Han, S., Jeon, Y. I., Chung, D. S., Hwang, P., Le, H., Warden, J. L., & Ho, D. (2017). Transporting mammalian cells at ambient temperature: A viable alternative to dry ice. Advances in Bioscience and Biotechnology, 8(4), 127-133. https://doi.org/10.4236/abb.2017.84009
Stevens, V. L., Patel, A. V., Feigelson, H. S., Rodriguez, C., Thun, M. J., & Calle, E. E. (2007). Cryopreservation of whole blood samples collected in the field for a large epidemiologic study. Cancer Epidemiology, Biomarkers & Prevention, 16(10), 2160-2163. https://doi.org/10.1158/1055-9965.EPI-07-0604
Sundaramurthi, P., & Suryanarayanan, R. (2012). Calorimetry and complementary techniques to characterize frozen and freeze-dried systems. Advanced Drug Delivery Reviews, 64(5), 384-395. https://doi.org/10.1016/j.addr.2011.12.004
Suuronen, E. J., Kuraitis, D., & Ruel, M. (2008). Improving cell engraftment with tissue engineering. Seminars in Thoracic and Cardiovascular Surgery, 20(2), 110-114. https://doi.org/10.1053/j.semtcvs.2008.03.005
Svalgaard, J. D., Talkhoncheh, M. S., Haastrup, E. K., Munthe-Fog, L., Clausen, C., Hansen, M. B., Andersen, P., Gørløv, J. S., Larsson, J., & Fischer-Nielsen, A. (2018). Pentaisomaltose, an alternative to DMSO. Engraftment of cryopreserved human CD34+ cells in immunodeficient NSG mice. Cell Transplantation, 27(9), 1407-1412. https://doi.org/10.1177/0963689718786226
Swioklo, S., Constantinescu, A., & Connon, C. J. (2016). Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Translational Medicine, 5(3), 339-349. https://doi.org/10.5966/sctm.2015-0131
Syme, R., Bewick, M., Stewart, D., Porter, K., Chadderton, T., & Glück, S. (2004). The role of depletion of dimethyl sulfoxide before autografting: On hematologic recovery, side effects, and toxicity. Biology of Blood and Marrow Transplantation, 10(2), 135-141. https://doi.org/10.1016/j.bbmt.2003.09.016
Theus, M. H., Wei, L., Cui, L., Francis, K., Hu, X., Keogh, C., & Yu, S. P. (2008). In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Experimental Neurology, 210(2), 656-670. https://doi.org/10.1016/j.expneurol.2007.12.020
Tounkara, F. K., Dumont, N., Fournier, S., Boyer, L., Nadeau, P., & Pineault, N. (2012). Mild hyperthermia promotes and accelerates development and maturation of erythroid cells. Stem Cells and Development, 21(17), 3197-3208. https://doi.org/10.1089/scd.2012.0112
Troitzsch, R. Z., Vass, H., Hossack, W. J., Martyna, G. J., & Crain, J. (2008). Molecular mechanisms of cryoprotection in aqueous proline: Light scattering and molecular dynamics simulations. The Journal of Physical Chemistry B, 112(14), 4290-4297. https://doi.org/10.1021/jp076713m
Trusal, L. R., Guzman, A. W., & Baker, C. J. (1984). Characterization of freeze-thaw induced ultrastructural damage to endothelial cells in vitro. In Vitro, 20(4), 353-364. https://doi.org/10.1007/BF02618599
Umemura, E., Yamada, Y., Nakamura, S., Ito, K., Hara, K., & Ueda, M. (2011). Viable cryopreserving tissue-engineered cell-biomaterial for cell banking therapy in an effective cryoprotectant. Tissue Engineering Part C: Methods, 17(8), 799-807. https://doi.org/10.1089/ten.tec.2011.0003
Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., & Callesen, H. (1998). Open pulled straw (OPS) vitrification: A new way to reduce cryoinjuries of bovine ova and embryos. Molecular Reproduction and Development, 51(1), 53-58. https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
Vergara, M., Becerra, S., Berrios, J., Osses, N., Reyes, J., Rodriguez-Moya, M., Gonzalez, R., & Altamirano, C. (2014). Differential effect of culture temperature and specific growth rate on CHO cell behavior in chemostat culture. PLoS One, 9(4), e93865.
Vigneault, C., Thompson, J., Wu, S., Hui, K. P. C., & LeBlanc, D. I. (2009). Transportation of fresh horticultural produce. Postharvest Technologies for Horticultural Crops, 2(1), 1-24.
Vrana, N. E., Matsumura, K., Hyon, S. H., Geever, L. M., Kennedy, J. E., Lyons, J. G., Higginbotham, C. L., Cahill, P. A., & McGuinness, G. B. (2012). Cell encapsulation and cryostorage in PVA-Gelatin cryogels: Incorporation of carboxylated Ε-poly-L-lysine as cryoprotectant. Journal of Tissue Engineering and Regenerative Medicine, 6(4), 280-290. https://doi.org/10.1002/term.431
Wang, J., Chen, P., Xu, J., Zou, J. X., Wang, H., & Chen, H. W. (2015). Transporting cells in semi-solid gel condition and at ambient temperature. PLoS One, 10(6), e0128229. https://doi.org/10.1371/journal.pone.0128229
Wang, J., Wei, Y., Zhao, S., Zhou, Y., He, W., Zhang, Y., & Deng, W. (2017). The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment. PLoS One, 12(4), e0176120. https://doi.org/10.1371/journal.pone.0176120
Watanabe, K., Imanishi, S., Akiduki, G., Cornette, R., & Okuda, T. (2016). Air-dried cells from the anhydrobiotic insect, Polypedilum vanderplanki, can survive long term preservation at room temperature and retain proliferation potential after rehydration. Cryobiology, 73(1), 93-98. https://doi.org/10.1016/j.cryobiol.2016.05.006
Wheatley, S. P., & Wheatley, D. N. (2019). Transporting cells over several days without dry-ice. Journal of Cell Science, 132(21), jcs238139. https://doi.org/10.1242/jcs.238139
Wille, J. J., Burdge, J. J., & Park, J. Y. (2014). Methods for the preparation of an autologous serum-free cultured epidermis and for autografting applications, Epidermal cells (pp. 203-218). Springer.
Wise, H., Abel, P. W., & Cawkill, D. (2009). Use of reduced temperature cell pausing to enhance flexibility of cell-based assays. SLAS Discovery, 14(6), 716-722. https://doi.org/10.1177/1087057109335748
Wolkers, W. F., Tablin, F., & Crowe, J. H. (2002). From anhydrobiosis to freeze-drying of eukaryotic cells. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 131(3), 535-543. https://doi.org/10.1016/s1095-6433(01)00505-0
Wolkers, W. F., Walker, N. J., Tablin, F., & Crowe, J. H. (2001). Human platelets loaded with trehalose survive freeze-drying. Cryobiology, 42(2), 79-87. https://doi.org/10.1006/cryo.2001.2306
Woods, E. J., Pollok, K. E., Byers, M. A., Perry, B. C., Purtteman, J., Heimfeld, S., & Gao, D. (2007). Cord blood stem cell cryopreservation. Transfusion Medicine and Hemotherapy, 34(4), 276-285. https://doi.org/10.1159/000104183
Wright, B., Cave, R. A., Cook, J. P., Khutoryanskiy, V. V., Mi, S., Chen, B., Leyland, M., & Connon, C. J. (2012). Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel. Regenerative Medicine, 7(3), 295-307. https://doi.org/10.2217/rme.12.7
Yang, J., Cai, N., Zhai, H., Zhang, J., Zhu, Y., & Zhang, L. (2016). Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Scientific Reports, 6, 37458. https://doi.org/10.1038/srep37458
Yang, J., Pan, C., Sui, X., Cai, N., Zhang, J., Zhu, Y., & Zhang, L. (2017). The hypothermic preservation of mammalian cells with assembling extracellular-matrix-mimetic microparticles. Journal of Materials Chemistry B, 5(8), 1535-1541. https://doi.org/10.1039/C6TB03206K
Yang, J., Sui, X., Li, Q., Zhao, W., Zhang, J., Zhu, Y., Chen, P., & Zhang, L. (2019). In situ encapsulation of postcryopreserved cells using alginate polymer and zwitterionic betaine. ACS Biomaterials Science & Engineering, 5(5), 2621-2630. https://doi.org/10.1021/acsbiomaterials.9b00249
Yang, L., Li, C., Chen, L., & Li, Z. (2009). An Agarose-gel based method for transporting cell lines. Current Chemical Genomics, 3, 50-53. https://doi.org/10.2174/1875397300903010050
Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16(2), 99-117. https://doi.org/10.1002/rmb2.12024
Yokomise, H., Inui, K., Wada, H., Hasegawa, S., Ohno, N., & Hitomi, S. (1995). Reliable cryopreservation of trachea for one month in a new trehalose solution. The Journal of Thoracic and Cardiovascular Surgery, 110(2), 382-385. https://doi.org/10.1016/S0022-5223(95)70234-2
Yong, K. W., Safwani, W. K. Z. W., Xu, F., Zhang, X., Choi, J. R., Abas, W. A. B. W., Omar, S. Z., Azmi, M. A. N., Chua, K. H., & Pingguan-Murphy, B. (2017). Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(8), 2217-2226. https://doi.org/10.1002/term.2120
Yu, G., Li, R., & Hubel, A. (2018). Interfacial interactions of sucrose during cryopreservation detected by Raman spectroscopy. Langmuir, 35(23), 7388-7395. https://doi.org/10.1021/acs.langmuir.8b01616
Zhang, W., & He, X. (2011). Microencapsulating and banking living cells for cell-based medicine. Journal of Healthcare Engineering, 2(4), 427-446. https://doi.org/10.1260/2040-2295.2.4.427
Zhang, X. B., Li, K., Yau, K. H., Tsang, K. S., Fok, T. F., Li, C. K., Lee, S. M., & Yuen, P. M. P. (2003). Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese Diabetic-SCID repopulating cells. Transfusion, 43(2), 265-272. https://doi.org/10.1046/j.1537-2995.2003.00301.x
Zimmermann, H., Zimmermann, D., Reuss, R., Feilen, P. J., Manz, B., Katsen, A., Weber, M., Ihmig, F. R., Ehrhart, F., Gessner, P., Behringer, M., Steinbach, A., Wegner, L. H., Sukhorukov, V. L., Vásquez, J. A., Schneider, S., Weber, M. M., Volke, F., Wolf, R., & Zimmermann, U. (2005). Towards a medically approved technology for Alginate-based microcapsules allowing long-term immunoisolated transplantation. Journal of Materials Science. Materials in Medicine, 16(6), 491-501. https://doi.org/10.1007/s10856-005-0523-2

Auteurs

Shabnam Heydarzadeh (S)

Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran.
Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Sima Kheradmand Kia (S)

Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, The Netherlands.

Seti Boroomand (S)

Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.

Mehdi Hedayati (M)

Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Articles similaires

STAT3 Transcription Factor Respiratory Syncytial Virus Infections Humans Animals Mice
Protein Processing, Post-Translational Humans Blood Coagulation Fibrin Fibrinogen
Animals Wound Healing Mice Wearable Electronic Devices Wound Infection
Humans Plant Extracts Antioxidants Apoptosis Cell Line, Tumor

Classifications MeSH