Catalytic Asymmetric α-Alkylsulfenylation with a Disulfide Reagent.

Alkylsulfenylation Aminocatalysis Asymmetric Catalysis Chiral Primary Amine Disulfide

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
26 09 2022
Historique:
received: 20 06 2022
pubmed: 30 7 2022
medline: 23 9 2022
entrez: 29 7 2022
Statut: ppublish

Résumé

The use of alkylthio electrophiles in synthesis has remained elusive because of the lack of a suitable reagent that is practical and of excellent enantioselectivity and appropriate reactivity. In this work we introduce a novel alkylthio reagent based on the 2-mercapto-5-methyl-1,3,4-thiadiazole (MMTD) fragment for direct alkylsulfenylation of ketones and aldehydes. It can be readily prepared by the oxidative coupling between thiadiazole and other alkylthio reagents and be combined with chiral primary aminocatalysis. This protocol provides facile access to diverse α-alkylthio quaternary carbon centers with good stereoselectivities.

Identifiants

pubmed: 35906183
doi: 10.1002/anie.202209044
doi:

Substances chimiques

Aldehydes 0
Disulfides 0
Indicators and Reagents 0
Ketones 0
Thiadiazoles 0
Carbon 7440-44-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202209044

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

 
E. Block, Reactions of Organosulfur Compounds, Academic Press, New York, 1978;
X. Jiang, Sulfur Chemistry in Topics in Current Chemistry, Spring Nature, Cham, 2019;
P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 2014, 114, 8807-8864;
M. D. McReynolds, J. M. Dougherty, P. R. Hanson, Chem. Rev. 2004, 104, 2239-2258;
A. Mishra, C. Q. Ma, P. Bäuerle, Chem. Rev. 2009, 109, 1141-1276;
K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 2014, 47, 1493-1502;
D. Y. Lin, S. Z. Zhang, E. Block, L. C. Katz, Nature 2005, 434, 470-477;
D. A. Boyd, Angew. Chem. Int. Ed. 2016, 55, 15486-15502;
Angew. Chem. 2016, 128, 15712-15729;
N. Z. Wang, P. Saidhareddy, X. F. Jiang, Nat. Prod. Rep. 2020, 37, 246-275;
H. Liu, X. F. Jiang, Chem. Asian J. 2013, 8, 2546-2563;
J. Margalef, J. S. M. Samec, ChemSusChem 2021, 14, 808-823.
For selected examples of disulfides, see:
S. Vásquez-Céspedes, A. Ferry, L. Candish, F. Glorius, Angew. Chem. Int. Ed. 2015, 54, 5772-5776;
Angew. Chem. 2015, 127, 5864-5868;
W. Ge, Y. Wei, Green Chem. 2012, 14, 2066-2070;
N. Devi, R. Rahaman, K. Sarma, P. Barman, Eur. J. Org. Chem. 2016, 384-388;
N. Devi, R. Rahaman, K. Arma, T. Khan, P. Barman, Eur. J. Org. Chem. 2017, 1520-1525;
J. Zhao, F. Yang, Z. Yu, X. Tang, Y. Wu, C. Ma, Q. Meng, Synlett 2019, 30, 2181-2184;
A. F. Vaquer, A. Frongia, F. SeccI, E. Tuveri, RSC Adv. 2015, 5, 96695-96704;
Y. W. Liu, S. S. Badsara, Y. C. Liu, C. F. Lee, RSC Adv. 2015, 5, 44299-44305;
J. Sun, D. Zhang-Negrerie, Y. Du, Adv. Synth. Catal. 2016, 358, 2035-2040;
B. M. Trost, Chem. Rev. 1978, 78, 363-382.
For selected examples of arenesulfonyl/phenylsulfenyl chloride, see:
M. Chen, Z. T. Huang, Q. Y. Zheng, Chem. Commun. 2012, 48, 11686-11688;
Q. Wu, D. Zhao, X. Qin, J. Lan, J. You, Chem. Commun. 2011, 47, 9188-9190;
M. Jereb, A. Togni, Chem. Eur. J. 2007, 13, 9384-9392;
M. Jereb, A. Togni, Org. Lett. 2005, 7, 4041-4043;
D. Wang, S. Guo, R. Zhang, S. Lin, Z. Ya, RSC Adv. 2016, 6, 54377-54381;
X. Zhao, X. Y. Lu, A. Q. Wei, X. L. Jia, J. Chen, K. Lu, Tetrahedron Lett. 2016, 57, 5330-5333.
For selected examples, see:
M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794-797;
Angew. Chem. 2005, 117, 804-807;
M. Marigo, K. A. Jørgensen, Chem. Commun. 2006, 2001-2011;
J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjaersgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296-18304.
For selected examples, see:
L. Fang, A. J. Lin, H. W. Hu, C. J. Zhu, Chem. Eur. J. 2009, 15, 7039-7043;
A. Lin, L. Fang, X. Zhu, C. Zhu, Y. X. Cheng, Adv. Synth. Catal. 2011, 353, 545-549;
S. Shirakawa, T. Tokuda, A. Kasai, K. Maruoka, Org. Lett. 2013, 15, 3350-3353;
J. Q. Zhao, S. W. Luo, X. M. Zhang, X. Y. Xu, M. Q. Zhou, W. C. Yuan, Tetrahedron 2017, 73, 5444-5450;
Y. You, Z. J. Wu, Z. H. Wang, X. Y. Xu, X. M. Zhang, W. C. Yuan, J. Org. Chem. 2015, 80, 8470-8477;
L. Huang, J. Li, Y. Zhao, X. Ye, Y. Liu, L. Yan, C.-H. Tan, H. Liu, Z. Jiang, J. Org. Chem. 2015, 80, 8933-8941;
K. Liao, F. Zhou, J.-S. Yu, W.-M. Gao, J. Zhou, Chem. Commun. 2015, 51, 16255-16258;
W.-C. Gao, J. Tian, Y.-Z. Shang, X. Jiang, Chem. Sci. 2020, 11, 3903-3908;
L. Cui, Y. You, X. Mi, S. Luo, Org. Chem. Front. 2018, 5, 2313-2316;
J. Han, Y. Zhang, X.-Y. Wu, H. N. C. Wong, Chem. Commun. 2019, 55, 397-400;
S. J. S. Roy, S. Mukherjee, Org. Biomol. Chem. 2017, 15, 6921-6925;
W. C. Gao, J. Liu, X. Jiang, Org. Chem. Front. 2021, 8, 1275-1279.
S. Sobhani, D. Fielenbach, M. Marigo, T. C. Wabnitz, K. A. Jørgensen, Chem. Eur. J. 2005, 11, 5689-5694.
 
K. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S. Iwasa, J. Am. Chem. Soc. 2012, 134, 9836-9839;
J. Blom, G. J. Reyes-Rodriguez, H. N. Tobiesen, J. N. Lamhauge, M. V. Iversen, C. L. Barløse, N. Hammer, M. Rusbjerg, K. A. Jørgensen, Angew. Chem. Int. Ed. 2019, 58, 17856-17862;
Angew. Chem. 2019, 131, 18020-18026.
L. Zhang, S. Nagaraju, B. Paplal, Y. Lin, S. Liu, Eur. J. Org. Chem. 2021, 1365-1369.
 
P. Bora, P. Chauhan, K. A. Pardeshi, H. Chakrapani, RSC Adv. 2018, 8, 27359-27374;
D. Zhang, I. Macinkovic, N. O. Devarie-Baez, J. Pan, C.-M. Park, K. S. Carroll, M. R. Filipovic, M. Xian, Angew. Chem. Int. Ed. 2014, 53, 575-581;
Angew. Chem. 2014, 126, 586-592.
 
Q. Yang, Y. Li, J. Yang, Y. Liu, L. Zhang, S. Luo, J. Cheng, Angew. Chem. Int. Ed. 2020, 59, 19282-19291;
Angew. Chem. 2020, 132, 19444-19453;
Q. Yang, Y. Liu, J. Cheng, Y. Li, S. Liu, Y. Duan, L. Zhang, S. Luo, ChemPhysChem 2022, 23, e202200255.
S. Xu, J. R. Knight, B. J. Brummett, M. Shieh, Q. Cui, Y. Wang, G. Ramush, M. Xian, Org. Lett. 2022, 24, 2546-2550.
 
P. Huang, P. Wang, S. Tang, Z. Fu, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 8115-8119;
Angew. Chem. 2018, 130, 8247-8251;
Y. Dou, X. Huang, H. Wang, L. Yang, H. Li, B. Yuan, G. Yang, Green Chem. 2017, 19, 2491-2495;
J. Yuan, C. Liu, A. Lei, Org. Chem. Front. 2015, 2, 677-680;
S. Ren, N. Luo, K. Liu, J.-B. Liu, J. Chem. Res. 2021, 45, 365-373.
 
Q. Zhang, M. Shi, X. Mi, S. Luo, Org. Chem. Front. 2022, 9, 1276-1281;
Q. Zhang, Y. Li, L. Zhang, S. Luo, Angew. Chem. Int. Ed. 2021, 60, 10971-10976;
Angew. Chem. 2021, 133, 11066-11071;
L. Zhang, N. Fu, S. Luo, Acc. Chem. Res. 2015, 48, 986-997;
Y. Wang, H. Zhou, K. Yang, C. You, L. Zhang, S. Luo, Org. Lett. 2019, 21, 407-411.
Deposition Numbers 2180595 (for 3 aa-3) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Auteurs

Mingying Shi (M)

College of Chemistry, Beijing Normal University, Beijing, 100875, China.

Qi Zhang (Q)

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Jiali Gao (J)

College of Chemistry, Beijing Normal University, Beijing, 100875, China.

Xueling Mi (X)

College of Chemistry, Beijing Normal University, Beijing, 100875, China.

Sanzhong Luo (S)

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice

Classifications MeSH