Magnetic bioassembly platforms for establishing craniofacial exocrine gland organoids as aging in vitro models.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
08
03
2022
accepted:
22
07
2022
entrez:
5
8
2022
pubmed:
6
8
2022
medline:
10
8
2022
Statut:
epublish
Résumé
A multitude of aging-related factors and systemic conditions can cause lacrimal gland (LG) or salivary gland (SG) hypofunction leading to degenerative dry eye disease (DED) or dry mouth syndrome, respectively. Currently, there are no effective regenerative therapies that can fully reverse such gland hypofunction due to the lack of reproducible in vitro aging models or organoids required to develop novel treatments for multi-omic profiling. Previously, our research group successful developed three-dimensional (3D) bioassembly nanotechnologies towards the generation of functional exocrine gland organoids via magnetic 3D bioprinting platforms (M3DB). To meet the needs of our aging Asian societies, a next step was taken to design consistent M3DB protocols to engineer LG and SG organoid models with aging molecular and pathological features. Herein, a feasible step-by-step protocol was provided for producing both LG and SG organoids using M3DB platforms. Such protocol provided reproducible outcomes with final organoid products resembling LG or SG native parenchymal epithelial tissues. Both acinar and ductal epithelial compartments were prominent (21 ± 4.32% versus 42 ± 6.72%, respectively), and could be clearly identified in these organoids. Meanwhile, these can be further developed into aging signature models by inducing cellular senescence via chemical mutagenesis. The generation of senescence-like organoids will be our ultimate milestone aiming towards high throughput applications for drug screening and discovery, and for gene therapy investigations to reverse aging.
Identifiants
pubmed: 35930565
doi: 10.1371/journal.pone.0272644
pii: PONE-D-22-06068
pmc: PMC9355193
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0272644Déclaration de conflit d'intérêts
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Glauco R. Souza is employed by Greiner Bio-One International GmbH which produces NanoShuttle™ magnetic nanoparticles.
Références
Stem Cell Res Ther. 2020 Jan 8;11(1):20
pubmed: 31915062
Arch Ophthalmol. 2004 Mar;122(3):369-73
pubmed: 15006852
J Tissue Eng Regen Med. 2019 Mar;13(3):495-508
pubmed: 30666813
Biomaterials. 2018 Oct;180:52-66
pubmed: 30025245
Lab Anim. 2012 Oct;46(4):269-79
pubmed: 22969144
Periodontol 2000. 2016 Feb;70(1):11-25
pubmed: 26662479
PLoS One. 2013 Sep 12;8(9):e74046
pubmed: 24069265
Gerodontology. 2012 Mar;29(1):43-7
pubmed: 20636476
Curr Eye Res. 2019 Aug;44(8):863-872
pubmed: 30983427
Oral Dis. 2016 Oct;22(7):639-48
pubmed: 27214128
Invest Ophthalmol Vis Sci. 2000 Dec;41(13):4117-23
pubmed: 11095604
J Pharmacol Toxicol Methods. 2010 Nov-Dec;62(3):184-95
pubmed: 20601024
J Dent Res. 2022 Jul;101(8):983-991
pubmed: 35259994
Int Ophthalmol Clin. 2017 Spring;57(2):47-64
pubmed: 28282314
Oncogenesis. 2015 Dec 21;4:e180
pubmed: 26690546
Adv Otorhinolaryngol. 1981;26:97-234
pubmed: 7020374
J Biol Buccale. 1980 Sep;8(3):187-200
pubmed: 6937456
Int Rev Immunol. 2013 Feb;32(1):19-41
pubmed: 23360156
Pflugers Arch. 2013 Feb;465(2):271-81
pubmed: 23179381
Cell Stem Cell. 2021 Jul 1;28(7):1221-1232.e7
pubmed: 33730555
Dev Ophthalmol. 2008;41:298-312
pubmed: 18453777
Clin Exp Ophthalmol. 2003 Jun;31(3):229-32
pubmed: 12786773
Mol Ther Methods Clin Dev. 2020 Jul 31;18:839-855
pubmed: 32953934
Front Mol Biosci. 2021 Sep 30;8:711602
pubmed: 34660692
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4350-63
pubmed: 26176872
Singapore Dent J. 2015 Dec;36:12-7
pubmed: 26684490
Br J Ophthalmol. 1984 Sep;68(9):674-80
pubmed: 6331845
Cells. 2021 Jun 11;10(6):
pubmed: 34208028
Med Dosim. 2017 Winter;42(4):357-362
pubmed: 28784430
SLAS Discov. 2022 Apr;27(3):151-158
pubmed: 35058190
Physiol Genomics. 2010 Apr 1;41(2):194-200
pubmed: 20145203
Curr Ophthalmol Rep. 2013 Jun;1(2):51-57
pubmed: 23710423
FASEB Bioadv. 2022 Mar 28;4(6):408-434
pubmed: 35664831
Tissue Eng Part A. 2018 Feb;24(3-4):301-309
pubmed: 28783453
Nucleic Acids Res. 2008 Jun;36(11):3667-75
pubmed: 18474527
PLoS One. 2012;7(1):e29458
pubmed: 22253725
Ocul Surf. 2010 Jul;8(3):111-34
pubmed: 20712969
J Chin Med Assoc. 2021 May 1;84(5):459-464
pubmed: 33871392
PLoS One. 2013 Aug 19;8(8):e72706
pubmed: 23977341
Surv Ophthalmol. 1981 Sep-Oct;26(2):84-96
pubmed: 7034254
PLoS One. 2016 Jan 22;11(1):e0147407
pubmed: 26800086
Arch Ophthalmol. 1972 Nov;88(5):493-7
pubmed: 4117787