Tumor inhibitory effect via immunostimulating activities of a rhamnogalacturonan-I-rich polysaccharide isolated from turmeric (Curcuma longa L.).
Colon26-M3.1
anti-metastatic effects
cytolytic activity
lung cancer model
rhamnogalacturonan-I
turmeric polysaccharide
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
29
06
2022
received:
26
04
2022
accepted:
19
07
2022
pubmed:
8
8
2022
medline:
13
10
2022
entrez:
7
8
2022
Statut:
ppublish
Résumé
In this study, a turmeric polysaccharide (TP-0) was isolated through hot water extraction and ethanol precipitation to produce a novel active polysaccharide from turmeric other than curcuminoids. TP-0 was found to be primarily composed of eight different monosaccharides, such as galactose (15.9%), galacturonic acid (15.2%), arabinose (11.4%), and rhamnose (9.7%), which are typical rhamnogalacturonan (RG)-I sugars. When stimulated with TP-0, peritoneal macrophages secreted a variety of immunostimulatory cytokines. In addition, intravenous and oral administration of TP-0 significantly enhanced the natural killer (NK) cells and cytotoxic T lymphocyte (CTL)-mediated cytotoxicity against tumor cells. In an assay for lung cancer induced by Colon26-M3.1 carcinoma, prophylactic intravenous and oral administration of TP-0 effectively inhibited lung cancer. These findings reveal that TP-0, a typical RG-I-type polysaccharide that is isolated from turmeric, has potent anti-metastatic activities, and these activities are linked to various immunological factors such as macrophages, NK cells, and CTL. PRACTICAL APPLICATIONS: Many studies related with turmeric have only focused that a curcuminoid of turmeric has beneficial effects on human health system. Nevertheless, in this study, it was confirmed that polysaccharide isolated from turmeric showed potent anti-cancer effects via activities of various immunological factors such as macrophages, NK cells, and CTL. These results suggest the high potential for development value of turmeric as a new candidate for immunostimulating-related health functional food ingredients.
Substances chimiques
Cytokines
0
Diarylheptanoids
0
Food Ingredients
0
Immunologic Factors
0
Polysaccharides
0
Rhamnogalacturonans
0
Water
059QF0KO0R
Ethanol
3K9958V90M
Arabinose
B40ROO395Z
Rhamnose
QN34XC755A
Galactose
X2RN3Q8DNE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14362Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 491. https://doi.org/10.3389/fimmu.2014.00491
Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 19, 1801. https://doi.org/10.3390/ijms19061801
Bald, T., Pedde, A.-M., Corvino, D., & Böttcher, J. P. (2020). The role of NK cell as central communicators in cancer immunity. Advances in Immunology, 147, 61-88. https://doi.org/10.1016/bs.ai.2020.06.002
Beutler, B. (2004). Innate immunity: An overview. Molecular Immunology, 40, 845-859. https://doi.org/10.1016/j.molimm.2003.10.005
Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484-489.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cavalcanti, Y. V. N., Brelaz, M. C. A., Neves, J. K. A. L., Ferraz, J. C., & Pereira, V. R. A. (2012). Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulmonary Medicine, 2012, 1-10. https://doi.org/10.1155/2012/745483
Dai, J., Wu, Y., Chen, S., Zhu, S., Yin, H., Wang, M., & Tang, J. (2010). Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers, 82, 629-635. https://doi.org/10.1016/j.carbpol.2010.05.029
de Groen, R. A., Boltjes, A., Hou, J., Liu, B. S., McPhee, F., Friborg, J., Janssen, H. L., & Boonstra, A. (2015). IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. European Journal of Immunology, 45, 250-259. https://doi.org/10.1002/eji.201444903
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Fang, X., & Chen, X. (2013). Structure elucidation and immunological activity of a novel pectic polysaccharide from the stems of Avicennia marina. European Food Research and Technology, 236, 243-248. https://doi.org/10.1007/s00217-012-1877-6
Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determination in proteins. Journal of Biological Chemistry, 73, 627-650.
Hackett, C. J. (2003). Innate immune activation as a broad-spectrum biodefense strategy: Prospects and research challenges. Journal of Allergy and Clinical Immunology, 112, 686-694. https://doi.org/10.1016/S0091-6749(03)02025-6
Hoebe, K., Janssen, E., & Beutler, B. (2004). The interface between innate and adaptive immunity. Nature Immunology, 5, 971-974. https://doi.org/10.1038/ni1004-971
Hunter, C., Chizzonite, R., & Remington, J. (1995). IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. The Journal of Immunology, 155, 4347-4354.
Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327, 291-295. https://doi.org/10.1126/science.1183021
Jo, M., Jung, J. H., Kim, H. W., Lee, S. J., Chi, Y. M., Jee, H. S., Yoon, T. J., & Shin, K.-S. (2020). Polysaccharide isolated from fermented barley activates innate immune system and anti-tumor metastasis in mice. Journal of Cereal Science, 92, 102919. https://doi.org/10.1016/j.jcs.2020.102919
Karkhanis, Y. D., Zeltner, J. Y., Jackson, J. J., & Carlo, D. J. (1978). A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Analytical Biochemistry, 85, 595-601.
Kounsar, F., Rather, M. A., Ganai, B. A., & Zargar, M. A. (2011). Immuno-enhancing effects of the herbal extract from Himalayan rhubarb Rheum emodi wall. Ex Meissn. Food Chemistry, 126, 967-971. https://doi.org/10.1016/j.foodchem.2010.11.103
Lasek, W., Feleszko, W., Goląb, J., Stokłosa, T., Marczak, M., Dąbrowska, A., Malejczyk, M., & Jakóbisiak, M. (1997). Antitumor effects of the combination immunotherapy with interleukin-12 and tumor necrosis factor α in mice. Cancer Immunology, Immunotherapy, 45, 100-108. https://doi.org/10.1007/s002620050408
Lee, S. J., In, G., Lee, J.-W., & Shin, K.-S. (2021). Elucidation of the microstructure of an immuno-stimulatory polysaccharide purified from Korean red ginseng using sequential hydrolysis. International Journal of Biological Macromolecules, 186, 13-22. https://doi.org/10.1016/j.ijbiomac.2021.06.202
Lee, S. J., Saiki, I., Hayakawa, Y., Nunome, S., Yamada, H., & Kim, S.-H. (2003). Antimetastatic and immunomodulating properties of a new herbal prescription, Bojung-bangam-tang. International Immunopharmacology, 3, 147-157. https://doi.org/10.1016/S1567-5769(02)00091-7
Li, M., Yue, G. G.-L., Tsui, S. K.-W., Fung, K.-P., & Bik-San, L. C. (2018). Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 46, 131-141. https://doi.org/10.1016/j.phymed.2018.03.065
Lolis, E., & Bucala, R. (2003). Therapeutic approaches to innate immunity: Severe sepsis and septic shock. Nature Reviews Drug Discovery, 2, 635-645. https://doi.org/10.1038/nrd1153
Nishikado, H., Mukai, K., Kawano, Y., Minegishi, Y., & Karasuyama, H. (2011). NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo. The Journal of Immunology, 186, 5766-5771. https://doi.org/10.4049/jimmunol.1100370
Park, H.-R., Lee, H.-S., Cho, S. Y., Kim, Y.-S., & Shin, K.-S. (2013). Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. International Journal of Molecular Medicine, 31, 361-368. https://doi.org/10.3892/ijmm.2012.1224
Rock, K. L., Reits, E., & Neefjes, J. (2016). Present yourself! By MHC class I and MHC class II molecules. Trends in Immunology, 37, 724-737. https://doi.org/10.1016/j.it.2016.08.010
Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Kumar, N. V. A., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 163, 527-545. https://doi.org/10.1016/j.ejmech.2018.12.016
Schepetkin, I. A., Faulkner, C. L., Nelson-Overton, L. K., Wiley, J. A., & Quinn, M. T. (2005). Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. International Immunopharmacology, 5, 1783-1799. https://doi.org/10.1016/j.intimp.2005.05.009
Schepetkin, I. A., & Quinn, M. T. (2006). Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. International Immunopharmacology, 6, 317-333. https://doi.org/10.1016/j.intimp.2005.10.005
Son, S.-U., Park, H. Y., Suh, H. J., & Shin, K.-S. (2021). Evaluation of antitumor metastasis via immunostimulating activities of pectic polysaccharides isolated from radish leaves. Journal of Functional Foods, 85, 104639. https://doi.org/10.1016/j.jff.2021.104639
Suttles, J., Schwarting, G., & Stout, R. (1986). Flow cytometric analysis reveals the presence of asialo GM1 on the surface membrane of alloimmune cytotoxic T lymphocytes. The Journal of Immunology, 136, 1586-1591.
Turvey, S. E., & Broide, D. H. (2010). Innate immunity. Journal of Allergy and Clinical Immunology, 125, S24-S32. https://doi.org/10.1016/j.jaci.2009.07.016
Uribe-Querol, E., & Rosales, C. (2020). Phagocytosis: Our current understanding of a universal biological process. Frontiers in Immunology, 11, 1066. https://doi.org/10.3389/fimmu.2020.01066
Voskoboinik, I., Whisstock, J. C., & Trapani, J. A. (2015). Perforin and granzymes: Function, dysfunction and human pathology. Nature Reviews Immunology, 15, 388-400. https://doi.org/10.1038/nri3839
Williams, M. A., & Bevan, M. J. (2007). Effector and memory CTL differentiation. Annual Review of Immunology, 25, 171-192. https://doi.org/10.1146/annurev.immunol.25.022106.141548
Xie, J.-H., Jin, M.-L., Morris, G. A., Zha, X.-Q., Chen, H.-Q., Yi, Y., Li, J.-E., Wang, Z.-J., Gao, J., & Nie, S.-P. (2016). Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition, 56, S60-S84. https://doi.org/10.1080/10408398.2015.1069255
Yamada, H., & Kiyohara, H. (1989). Bioactive polysaccharides from Chinese herbal medicines. Chinese Medicine, 3, 104-124.
Yang, Q., Goding, S., Hokland, M., & Basse, P. (2006). Antitumor activity of NK cells. Immunologic Research, 36, 13-25. https://doi.org/10.1385/IR:36:1:13