Conformational buffering underlies functional selection in intrinsically disordered protein regions.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
08 2022
Historique:
received: 22 06 2021
accepted: 23 06 2022
pubmed: 11 8 2022
medline: 16 8 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.

Identifiants

pubmed: 35948766
doi: 10.1038/s41594-022-00811-w
pii: 10.1038/s41594-022-00811-w
pmc: PMC10262780
mid: NIHMS1893822
doi:

Substances chimiques

Adenovirus E1A Proteins 0
Intrinsically Disordered Proteins 0
Retinoblastoma Protein 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

781-790

Subventions

Organisme : NCI NIH HHS
ID : R01 CA141244
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM115556
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS056114
Pays : United States

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

J Am Chem Soc. 2021 Sep 15;143(36):14540-14550
pubmed: 34473923
Biochemistry. 2002 Jan 8;41(1):1-7
pubmed: 11771996
Biochem Soc Trans. 2008 Apr;36(Pt 2):157-66
pubmed: 18363556
Chemistry. 2016 Sep 5;22(37):13010-3
pubmed: 27490777
mBio. 2018 May 1;9(3):
pubmed: 29717008
Biochim Biophys Acta. 2007 Dec;1774(12):1528-35
pubmed: 17976393
Proteins. 2011 Jun;79(6):2010-4
pubmed: 21491492
Methods Enzymol. 2021;647:145-171
pubmed: 33482987
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13260-5
pubmed: 19651603
Biochemistry. 2017 Dec 19;56(50):6565-6574
pubmed: 29168376
J Recept Signal Transduct Res. 2004 Feb;24(1-2):1-52
pubmed: 15344878
Comput Appl Biosci. 1993 Dec;9(6):745-56
pubmed: 8143162
Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50
pubmed: 27166375
Biophys J. 2017 Jan 10;112(1):16-21
pubmed: 28076807
Semin Cell Dev Biol. 2015 Jan;37:3-10
pubmed: 25305578
Cell Rep. 2014 Jun 12;7(5):1729-1739
pubmed: 24882001
Mol Biol Evol. 2015 Aug;32(8):2072-84
pubmed: 25862141
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011924
pubmed: 19257086
Bioinformatics. 2019 Aug 15;35(16):2856-2858
pubmed: 30615063
J Am Chem Soc. 2015 Sep 23;137(37):11962-9
pubmed: 26327565
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8183-8
pubmed: 20404210
J Biomol NMR. 1994 Sep;4(5):603-14
pubmed: 22911360
Nucleic Acids Res. 2018 Jul 2;46(W1):W329-W337
pubmed: 29860432
Mol Cell. 2014 Jul 17;55(2):161-9
pubmed: 25038412
J Biol Chem. 2013 Jun 28;288(26):18923-38
pubmed: 23632018
J Comput Chem. 2004 May;25(7):956-67
pubmed: 15027107
J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443
pubmed: 25844078
Nature. 2013 Jun 20;498(7454):390-4
pubmed: 23783631
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046-50
pubmed: 16593049
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
Protein Eng Des Sel. 2018 Mar 1;31(3):69-77
pubmed: 29370437
J Comput Chem. 2009 Apr 15;30(5):673-99
pubmed: 18506808
J Virol. 1992 Jul;66(7):4606-11
pubmed: 1534854
Proc Natl Acad Sci U S A. 2012 May 1;109(18):E1063-71
pubmed: 22517748
Biophys J. 2011 Aug 17;101(4):892-8
pubmed: 21843480
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23124-23131
pubmed: 31659043
J Mol Biol. 2022 May 30;434(10):167563
pubmed: 35351519
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Anal Biochem. 1992 Aug 15;205(1):65-9
pubmed: 1332537
Mol Cell. 2020 Aug 6;79(3):459-471.e4
pubmed: 32553192
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9243-E9252
pubmed: 29078291
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14609-14
pubmed: 20639465
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8
pubmed: 15980494
J Mol Biol. 2015 Nov 6;427(22):3587-3597
pubmed: 26344835
Cell. 2003 Mar 21;112(6):845-57
pubmed: 12654250
Cell. 2015 Oct 22;163(3):734-45
pubmed: 26456112
Structure. 2019 Aug 6;27(8):1270-1285.e6
pubmed: 31178221
Angew Chem Int Ed Engl. 2015 Jun 26;54(27):7958-62
pubmed: 26014966
Biophys J. 2010 May 19;98(10):2383-90
pubmed: 20483348
Eur J Biochem. 2002 Jan;269(1):2-12
pubmed: 11784292
Science. 2020 Feb 7;367(6478):694-699
pubmed: 32029630
J Am Chem Soc. 2007 May 2;129(17):5656-64
pubmed: 17411046
Biochemistry. 2004 Mar 2;43(8):2141-54
pubmed: 14979710
J Mol Evol. 2007 Sep;65(3):277-88
pubmed: 17721672
Virology. 2018 Dec;525:117-131
pubmed: 30265888
Mol Cell Biol. 1993 Dec;13(12):7267-77
pubmed: 8246949
Protein Sci. 2016 Dec;25(12):2256-2267
pubmed: 27699893
Elife. 2019 Jul 02;8:
pubmed: 31264965
J Mol Biol. 1999 Oct 22;293(2):321-31
pubmed: 10550212
J Am Chem Soc. 2010 Dec 29;132(51):18000-3
pubmed: 21128621
Structure. 2019 Feb 5;27(2):381-391.e2
pubmed: 30554840
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891
pubmed: 33137190
Mol Biol Cell. 2019 Aug 1;30(17):2331-2347
pubmed: 31216232
IUCrJ. 2015 Feb 26;2(Pt 2):207-17
pubmed: 25866658
J Biol Chem. 2006 Aug 18;281(33):23776-84
pubmed: 16790421
Biophys J. 2013 Aug 20;105(4):962-74
pubmed: 23972848
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5616-21
pubmed: 27140628
Curr Opin Struct Biol. 2011 Jun;21(3):441-6
pubmed: 21482101
Biophys J. 2015 Oct 20;109(8):1528-32
pubmed: 26488642
Biophys J. 2017 Aug 8;113(3):550-557
pubmed: 28793210
J Mol Biol. 2020 May 1;432(10):3205-3221
pubmed: 32198113
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16155-60
pubmed: 22984159
Elife. 2017 Nov 01;6:
pubmed: 29091028
Bioinformatics. 2009 May 1;25(9):1189-91
pubmed: 19151095
Trends Biochem Sci. 2009 Feb;34(2):53-9
pubmed: 19062293
Biochemistry. 2001 Dec 18;40(50):15069-73
pubmed: 11735389
Curr Opin Struct Biol. 2020 Jun;62:175-182
pubmed: 32151887
Annu Rep Comput Chem. 2009 Jan 1;5:49-76
pubmed: 20428473
Curr Opin Struct Biol. 2015 Jun;32:91-101
pubmed: 25863584
Nature. 1998 Feb 26;391(6670):859-65
pubmed: 9495340
Curr Opin Struct Biol. 2015 Jun;32:102-12
pubmed: 25863585
J Mol Biol. 2015 Feb 27;427(4):763-774
pubmed: 25562210
Science. 2015 Oct 30;350(6260):568-71
pubmed: 26405230
J Am Chem Soc. 2007 Mar 28;129(12):3494-5
pubmed: 17335212
Bioinformatics. 2018 Jun 1;34(11):1944-1946
pubmed: 29300836
Trends Biochem Sci. 2011 Mar;36(3):159-69
pubmed: 21146412
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13392-7
pubmed: 23901099
Chem Rev. 2014 Jul 9;114(13):6589-631
pubmed: 24773235
Genes Dev. 2007 Nov 1;21(21):2711-6
pubmed: 17974914
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4875-80
pubmed: 22403063
PLoS Pathog. 2014 Dec 11;10(12):e1004529
pubmed: 25502394
Biophys J. 2017 May 23;112(10):2038-2042
pubmed: 28487147
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W249-53
pubmed: 21622962
Nucleic Acids Res. 2016 Jul 8;44(W1):W424-9
pubmed: 27151198
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21413-21419
pubmed: 32817491
Biophys J. 2000 Feb;78(2):719-30
pubmed: 10653785
PLoS One. 2019 Jan 24;14(1):e0211192
pubmed: 30677073
Q Rev Biophys. 2014 Nov;47(4):285-363
pubmed: 25225856

Auteurs

Nicolás S González-Foutel (NS)

Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina.
Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas (IIB-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.

Juliana Glavina (J)

Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina.
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.

Wade M Borcherds (WM)

Department of Cell Biology, Microbiology, and Molecular Biology and, University of South Florida, Tampa, FL, USA.

Matías Safranchik (M)

Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina.

Susana Barrera-Vilarmau (S)

Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA.
Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain.

Amin Sagar (A)

Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, Montpellier, France.

Alejandro Estaña (A)

Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, Montpellier, France.
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Amelie Barozet (A)

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Nicolás A Garrone (NA)

Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina.

Gregorio Fernandez-Ballester (G)

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Alicante, Spain.

Clara Blanes-Mira (C)

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Alicante, Spain.

Ignacio E Sánchez (IE)

Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.

Gonzalo de Prat-Gay (G)

Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas (IIB-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.

Juan Cortés (J)

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Pau Bernadó (P)

Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, Montpellier, France.

Rohit V Pappu (RV)

Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA. pappu@wustl.edu.

Alex S Holehouse (AS)

Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA. alex.holehouse@wustl.edu.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA. alex.holehouse@wustl.edu.

Gary W Daughdrill (GW)

Department of Cell Biology, Microbiology, and Molecular Biology and, University of South Florida, Tampa, FL, USA. gdaughdrill@usf.edu.

Lucía B Chemes (LB)

Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina. lchemes@iib.unsam.edu.ar.
Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas (IIB-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina. lchemes@iib.unsam.edu.ar.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans

Classifications MeSH