Biocatalytic routes to stereo-divergent iridoids.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 08 2022
Historique:
received: 09 12 2021
accepted: 29 07 2022
entrez: 11 8 2022
pubmed: 12 8 2022
medline: 16 8 2022
Statut: epublish

Résumé

Thousands of natural products are derived from the fused cyclopentane-pyran molecular scaffold nepetalactol. These natural products are used in an enormous range of applications that span the agricultural and medical industries. For example, nepetalactone, the oxidized derivative of nepetalactol, is known for its cat attractant properties as well as potential as an insect repellent. Most of these naturally occurring nepetalactol-derived compounds arise from only two out of the eight possible stereoisomers, 7S-cis-trans and 7R-cis-cis nepetalactols. Here we use a combination of naturally occurring and engineered enzymes to produce seven of the eight possible nepetalactol or nepetalactone stereoisomers. These enzymes open the possibilities for biocatalytic production of a broader range of iridoids, providing a versatile system for the diversification of this important natural product scaffold.

Identifiants

pubmed: 35953485
doi: 10.1038/s41467-022-32414-w
pii: 10.1038/s41467-022-32414-w
pmc: PMC9372074
doi:

Substances chimiques

Biological Products 0
Cyclopentanes 0
Iridoids 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4718

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

Fang, C., Fernie, A. R. & Luo, J. Exploring the diversity of plant metabolism. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2018.09.006 (2019).
Weng, J. K. The evolutionary paths towards complexity: a metabolic perspective. N. Phytol. 201, 1141–1149 (2014).
doi: 10.1111/nph.12416
Maeda, H. A. & Fernie, A. R. Evolutionary history of plant metabolism. Ann. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-080620-031054 (2021).
Wang, C. et al. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules 25, (2020).
Dinda, B., Debnath, S. & Harigaya, Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. 55, 159–222 (2007).
doi: 10.1248/cpb.55.159
Dinda, B., Debnath, S. & Harigaya, Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull. 55, 689–728 (2007).
doi: 10.1248/cpb.55.689
Dinda, B., Roy Chowdhury, D. & Mohanta, B. C. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3. Chem. Pharm. Bull. 57, 765–796 (2009).
doi: 10.1248/cpb.57.765
Dinda, B., Debnath, S. & Banik, R. Naturally occurring iridoids and secoiridoids. An updated review, part 4. Chem. Pharm. Bull. 59, 803–833 (2011).
doi: 10.1248/cpb.59.803
Uenoyama, R. et al. The characteristic response of domestic cats to plant iridoids allows them to gain chemical defense against mosquitoes. Sci. Adv. 7, 1–14 (2021).
doi: 10.1126/sciadv.abd9135
Todd, N. B. Inheritance of the Catnip response in domestic cats. J. Hered. 53, 54–56 (1962).
pubmed: 13921504 doi: 10.1093/oxfordjournals.jhered.a107121
Gkinis, G. et al. Evaluation of the repellent effects of Nepeta parnassica extract, essential oil, and its major nepetalactone metabolite against mosquitoes. Parasitol. Res. 113, 1127–1134 (2014).
pubmed: 24449446 doi: 10.1007/s00436-013-3750-3
Gkinis, G., Tzakou, O., Iliopoulou, D. & Roussis, V. Chemical composition and biological activity of Nepeta parnassica Oils and Isolated Nepetalactones. Z. fur Naturforsch.—Sect. C. J. Biosci. 58, 681–686 (2003).
doi: 10.1515/znc-2003-9-1015
Birkett, M. A., Hassanali, A., Hoglund, S., Pettersson, J. & Pickett, J. A. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 72, 109–114 (2011).
pubmed: 21056438 doi: 10.1016/j.phytochem.2010.09.016
Zhu, J. et al. Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J. Am. Mosq. Control Assoc. 22, 515–522 (2006).
pubmed: 17067055 doi: 10.2987/8756-971X(2006)22[515:ARALAO]2.0.CO;2
Simkin, A. J. et al. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85, 36–43 (2013).
pubmed: 23102596 doi: 10.1016/j.phytochem.2012.09.014
Collu, G. et al. Geraniol 10‐hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 508, 215–220 (2001).
Krithika, R. et al. Characterization of 10-Hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis. Sci. Rep. 5, 1–6 (2015).
doi: 10.1038/srep08258
Miettinen, K. et al. The seco-iridoid pathway from Catharanthus roseus. Nat. Commun. 5, 3606 (2014).
Geu-Flores, F. et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492, 138–142 (2012).
pubmed: 23172143 doi: 10.1038/nature11692
Kries, H., Kellner, F., Kamileen, M. O. & O’Connor, S. E. Inverted stereocontrol of iridoid synthase in snapdragon. J. Biol. Chem. 292, 14659–14667 (2017).
pubmed: 28701463 pmcid: 5582856 doi: 10.1074/jbc.M117.800979
Jensen, S. Ecological Chemistry and Biochemistry of Plant Terpenoids (Oxford University Press, 1991).
Jensen, S. R., Franzyk, H. & Wallander, E. Chemotaxonomy of the oleaceae: Iridoids as taxonomic markers. Phytochemistry 60, 213–231 (2002).
pubmed: 12031440 doi: 10.1016/S0031-9422(02)00102-4
Taskova, R. M., Gotfredsen, C. H. & Jensen, S. R. Chemotaxonomy of Veroniceae and its allies in the plantaginaceae. Phytochemistry 67, 286–301 (2006).
pubmed: 16386770 doi: 10.1016/j.phytochem.2005.11.011
Lichman, B. R. et al. Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat. Chem. Biol. 15, 71–79 (2019).
pubmed: 30531909 doi: 10.1038/s41589-018-0185-2
Lichman, B. R. et al. The evolutionary origins of the cat attractant nepetalactone in catnip. Sci. Adv. 6, eaba0721 (2020).
Jörnvall, H. et al. Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003–6013 (1995).
pubmed: 7742302 doi: 10.1021/bi00018a001
Ringer, K. L., Davis, E. M. & Croteau, R. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol. 137, 863–872 (2005).
pubmed: 15734920 pmcid: 1065387 doi: 10.1104/pp.104.053298
Jamzad, Z., Chase, M. W., Ingrouille, M., Simmonds, M. S. J. & Jalili, A. Phylogenetic relationships in Nepeta L. (Lamiaceae) and related genera based on ITS sequence data. Taxon 52, 21–32 (2003).
doi: 10.2307/3647299
Yee, D. A. et al. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab. Eng. 55, 76–84 (2019).
pubmed: 31226348 pmcid: 6717016 doi: 10.1016/j.ymben.2019.06.004
Brown, S., Clastre, M., Courdavault, V. & O’Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl Acad. Sci. 112, 3205–3210 (2015).
pubmed: 25675512 pmcid: 4371906 doi: 10.1073/pnas.1423555112
Campbell, A. et al. Engineering of a nepetalactol-producing platform strain of Saccharomyces cerevisiae for the production of plant Seco-Iridoids. ACS Synth. Biol. 5, 405–414 (2016).
pubmed: 26981892 doi: 10.1021/acssynbio.5b00289
Duan, Y., Liu, J., Du, Y., Pei, X. & Li, M. Aspergillus oryzae biosynthetic platform for de Novo Iridoid production. J. Agric. Food Chem. 69, 2501–2511 (2021).
pubmed: 33599481 doi: 10.1021/acs.jafc.0c06563
Bat-Erdene, U. et al. Cell-free total biosynthesis of plant Terpene natural products using an orthogonal cofactor regeneration system. ACS Catal. 11, 9898–9903 (2021).
pubmed: 35355836 pmcid: 8963176 doi: 10.1021/acscatal.1c02267
Liblikas, I. et al. Simplified isolation procedure and interconversion of the diastereomers of nepetalactone and nepetalactol. J. Nat. Prod. 68, 886–890 (2005).
pubmed: 15974613 doi: 10.1021/np049647d
Dawson, G. W. et al. The aphid sex pheromone. Pure Appl. Chem. 61, 555–558 (1989).
doi: 10.1351/pac198961030555
Bottini, A. T. et al. (7R)-Transtrans-nepetalactone from Nepeta elliptica. Phytochemistry 26, 1200–1202 (1987).
doi: 10.1016/S0031-9422(00)82380-8
Schilmiller, A. L. et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl Acad. Sci. USA 106, 10865–10870 (2009).
pubmed: 19487664 pmcid: 2705607 doi: 10.1073/pnas.0904113106
Harnying, W., Neudörfl, J. M. & Berkessel, A. Enantiospecific synthesis of Nepetalactones by one-step oxidative NHC catalysis. Org. Lett. 22, 386–390 (2020).
pubmed: 31904243 doi: 10.1021/acs.orglett.9b04034
Sim, J., Yoon, I., Yun, H., An, H. & Suh, Y. G. Divergent synthetic route to new cyclopenta[c]pyran iridoids: syntheses of jatamanin A, F, G and J, gastrolactone and nepetalactone. Org. Biomol. Chem. 14, 1244–1251 (2016).
pubmed: 26647357 doi: 10.1039/C5OB02147B
Kouda, R. & Yakushiji, F. Recent advances in Iridoid chemistry: biosynthesis and chemical synthesis. Chem. — Asian J. 15, 3771–3783 (2020).
pubmed: 33016562 doi: 10.1002/asia.202001034
Sherden, N. H. et al. Identification of iridoid synthases from Nepeta species: Iridoid cyclization does not determine nepetalactone stereochemistry. Phytochemistry 145, 48–56 (2018).
pubmed: 29091815 pmcid: 5739345 doi: 10.1016/j.phytochem.2017.10.004
Berrow, N. S. et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007).
Boachon, B. et al. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in lamiaceae. Mol. Plant 11, 1084–1096 (2018).
doi: 10.1016/j.molp.2018.06.002
Scheich, C., Kümmel, D., Soumailakakis, D., Heinemann, U. & Büssow, K. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res. 35, e43 (2007).
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. https://doi.org/10.1093/nar/22.22.4673 (1994).
Zuckerkandl, E. & Pauling, L. Evolving Genes and Proteins. https://doi.org/10.1016/b978-1-4832-2734-4.50017-6 (1965).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msy096 (2018).
Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N. Y). https://doi.org/10.2307/2408678 (1985).
Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 133–144 (2010).
doi: 10.1107/S0907444909047374
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D. Biol. Crystallogr. 69, 1204–1214 (2013).
doi: 10.1107/S0907444913000061
Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. Sect. D. Biol. Crystallogr. 64, 61–69 (2008).
doi: 10.1107/S090744490705024X
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D. Biol. Crystallogr. 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D. Struct. Biol. 75, 861–877 (2019).
doi: 10.1107/S2059798319011471
Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. https://doi.org/10.1093/nar/gky427 (2018).
Studer, G. et al. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36, 1765–1771 (2020).
pubmed: 31697312 doi: 10.1093/bioinformatics/btz828
Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
pubmed: 19499576 pmcid: 3041641
Meisel, L. et al. A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol. Res. 38, 83–88 (2005).
pubmed: 15977413 doi: 10.4067/S0716-97602005000100010
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. https://doi.org/10.1038/nprot.2013.084 (2013).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–528 (2016).
pubmed: 27043002 doi: 10.1038/nbt.3519
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324 (2014).
doi: 10.1093/nar/gku316

Auteurs

Néstor J Hernández Lozada (NJ)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Benke Hong (B)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Joshua C Wood (JC)

Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.

Lorenzo Caputi (L)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Jérôme Basquin (J)

Max-Planck Institute for Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, 82152, Martinsried, Germany.

Ling Chuang (L)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Maritta Kunert (M)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Carlos E Rodríguez López (CE)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Chloe Langley (C)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany.

Dongyan Zhao (D)

Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.

C Robin Buell (CR)

Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.

Benjamin R Lichman (BR)

University of York, Department of Biology, Centre for Agricultural Products, Wentworth Way, York, YO10 5DD, UK.

Sarah E O'Connor (SE)

Max-Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Hans-Knoll Strasse 8, 07745, Jena, Germany. oconnor@ice.mpg.de.

Articles similaires

Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Plasmodiophorida Plant Diseases Gene Expression Regulation, Plant Gene Expression Profiling Brassica
Animals Cullin Proteins Sepsis Mice Glycolysis
Saccharum Plant Growth Regulators Gene Expression Profiling Gene Expression Regulation, Plant Indoleacetic Acids

Classifications MeSH