Magnetic Resonance T1w/T2w Ratio in the Putamen and Cerebellum as a Marker of Cognitive Impairment in MSA: a Longitudinal Study.
Cerebellum
Cognitive impairment
Magnetic resonance imaging
Multiple system atrophy
Putamen
T1w/T2w
Journal
Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
accepted:
30
07
2022
medline:
8
9
2023
pubmed:
19
8
2022
entrez:
18
8
2022
Statut:
ppublish
Résumé
The exact pathophysiology of cognitive impairment in multiple system atrophy (MSA) is unclear. In our longitudinal study, we aimed to analyze (I) the relationships between cognitive functions and some subcortical structures, such as putamen and cerebellum assessed by voxel-based morphometry (VBM) and T1-weighted/T2-weighted (T1w/T2w) ratio, and (II) the neuroimaging predictors of the progression of cognitive deficits. Twenty-six patients with MSA underwent a comprehensive neuropsychological battery, motor examination, and brain MRI at baseline (T
Identifiants
pubmed: 35982370
doi: 10.1007/s12311-022-01455-8
pii: 10.1007/s12311-022-01455-8
pmc: PMC10485110
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
810-817Informations de copyright
© 2022. The Author(s).
Références
Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6. https://doi.org/10.1212/01.wnl.0000324625.00404.15 .
doi: 10.1212/01.wnl.0000324625.00404.15
pubmed: 18725592
pmcid: 2676993
Stankovic I, Krismer F, Jesic A, Antonini A, Benke T, Brown RG, Burn DJ, Holton JL, Kaufmann H, Kostic VS, Ling H, Meissner WG, Poewe W, Semnic M, Seppi K, Takeda A, Weintraub D, Wenning GK. Movement Disorders Society MSASG Cognitive impairment in multiple system atrophy: a position statement by the neuropsychology task force of the MDS multiple system atrophy (MODIMSA) study group. Mov Disord. 2014;29:857–67.
doi: 10.1002/mds.25880
pubmed: 24753321
pmcid: 4175376
Kim JS, Yang JJ, Lee DK, Lee JM, Youn J, Cho JW. Cognitive impairment and its structural correlates in the Parkinsonian subtype of multiple system atrophy. Neurodegener Dis. 2015;15(5):294–300. https://doi.org/10.1159/000430953 .
doi: 10.1159/000430953
pubmed: 26202063
Lee MJ, Shin JH, Seoung JK, Lee JH, Yoon U, Oh JH, Jung DS, Kim EJ. Cognitive impairments associated with morphological changes in cortical and subcortical structures in multiple system atrophy of the cerebellar type. Eur J Neurol. 2016;23(1):92–100.
doi: 10.1111/ene.12796
pubmed: 26234320
Caso F, Canu E, Lukic MJ, Petrovic IN, Fontana A, Nikolic I, Kostic VS, Filippi M, Agosta F. Cognitive impairment and structural brain damage in multiple system atrophy-parkinsonian variant. J Neurol. 2020;267(1):87–94. https://doi.org/10.1007/s00415-019-09555-y .
doi: 10.1007/s00415-019-09555-y
pubmed: 31559533
Chang CC, Chang YY, Chang WN, Lee YC, Wang YL, Lui CC, Huang CW, Liu WL. Cognitive deficits in multiple system atrophy correlate with frontal atrophy and disease duration. Eur J Neurol. 2009;16(10):1144–50. https://doi.org/10.1111/j.1468-1331.2009.02661.x .
doi: 10.1111/j.1468-1331.2009.02661.x
pubmed: 19486137
Ponticorvo S, Manara R, Russillo MC, Erro R, Picillo M, Di Salle G, Di Salle F, Barone P, Esposito F, Pellecchia MT. Magnetic resonance T1w/T2w ratio and voxel-based morphometry in multiple system atrophy. Sci Rep. 2021;11(1):21683. https://doi.org/10.1038/s41598-021-01222-5 .
doi: 10.1038/s41598-021-01222-5
pubmed: 34737396
pmcid: 8569168
Fiorenzato E, Weis L, Seppi K, Onofrj M, Cortelli P, Zanigni S, Tonon C, Kaufmann H, Shepherd TM, Poewe W, Krismer F, Wenning G, Antonini A, Biundo R, Movement Disorders Society MSA (MODIMSA) Neuropsychology and Imaging Study Groups. Brain structural profile of multiple system atrophy patients with cognitive impairment. J Neural Transm (Vienna). 2017;124(3):293–302. https://doi.org/10.1007/s00702-016-1636-0 .
doi: 10.1007/s00702-016-1636-0
pubmed: 27778099
Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27(3):349–56. https://doi.org/10.1002/mds.24893 .
doi: 10.1002/mds.24893
pubmed: 22275317
pmcid: 3641655
Canna A, Ponticorvo S, Russo AG, Manara R, Di Salle F, Saponiero R, Callaghan MF, Weiskopf N, Esposito F. A group-level comparison of volumetric and combined volumetric-surface normalization for whole brain analyses of myelin and iron maps. Magn Reson Imaging. 2018;54:225–40. https://doi.org/10.1016/j.mri.2018.08.021 .
doi: 10.1016/j.mri.2018.08.021
pubmed: 30176374
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–51. https://doi.org/10.1016/j.neuroimage.2005.02.018 .
doi: 10.1016/j.neuroimage.2005.02.018
pubmed: 15955494
Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36. https://doi.org/10.1006/nimg.2001.0786 .
doi: 10.1006/nimg.2001.0786
pubmed: 11525331
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41. https://doi.org/10.1016/s1053-8119(02)91132-8 .
doi: 10.1016/s1053-8119(02)91132-8
pubmed: 12377157
Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci. 2011;31(32):11597–616. https://doi.org/10.1523/JNEUROSCI.2180-11.2011 .
doi: 10.1523/JNEUROSCI.2180-11.2011
pubmed: 21832190
pmcid: 3167149
Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci. 2013;5(6):197. https://doi.org/10.3389/fnins.2012.00197 .
doi: 10.3389/fnins.2012.00197
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007 .
doi: 10.1016/j.neuroimage.2007.07.007
pubmed: 17761438
Monchi O, Petrides M, Petre V, Worsley K, Dagher A. Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci. 2001;21(19):7733–41.
doi: 10.1523/JNEUROSCI.21-19-07733.2001
pubmed: 11567063
pmcid: 6762921
Shen B, Pan Y, Jiang X, Wu Z, Zhu J, Dong J, Zhang W, Xu P, Dai Y, Gao Y, Xiao C, Zhang L. Altered putamen and cerebellum connectivity among different subtypes of Parkinson’s disease. CNS Neurosci Ther. 2020;26(2):207–14. https://doi.org/10.1111/cns.13259 .
doi: 10.1111/cns.13259
pubmed: 31730272
Gao Y, Nie K, Huang B, Mei M, Guo M, Xie S, Huang Z, Wang L, Zhao J, Zhang Y, Wang L. Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci Lett. 2017;658:121–32. https://doi.org/10.1016/j.neulet.2017.08.028 .
doi: 10.1016/j.neulet.2017.08.028
pubmed: 28823894
Hünerli D, Emek-Savaş DD, Çavuşoğlu B, Dönmez Çolakoğlu B, Ada E, Yener GG. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin Neurophysiol. 2019;130(8):1208–17. https://doi.org/10.1016/j.clinph.2019.04.314 .
doi: 10.1016/j.clinph.2019.04.314
pubmed: 31163365
van Beilen M, Leenders KL. Putamen FDOPA uptake and its relationship tot cognitive functioning in PD. J Neurol Sci. 2006;248(1–2):68–71. https://doi.org/10.1016/j.jns.2006.05.033 .
doi: 10.1016/j.jns.2006.05.033
pubmed: 16782131
Kim HJ, Cheong EN, Jo S, Lee S, Shim WH, Kwon M, Kim JS, Kim BJ, Lee JH. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Eur J Neurol. 2021;28(5):1520–7. https://doi.org/10.1111/ene.14770 .
doi: 10.1111/ene.14770
pubmed: 33559375
Mohan A, Vanneste S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation-from a phantom percept perspective. Prog Neurogibol. 2017;153:1–17.
doi: 10.1016/j.pneurobio.2017.03.010
Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008 .
doi: 10.1016/j.cortex.2009.11.008
pubmed: 20152963
pmcid: 2873095
Gao J-H, Parsons L, Bower J, Xiong J, Li J, Fox P. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996;272:545–7 (comment 482-483).
doi: 10.1126/science.272.5261.545
pubmed: 8614803
Jueptner M, Rijntjes M, Weiller C, Faiss J, Timman D, Mueller S, Diener H. Localization of a cerebellar timing process using PET. Neurology. 1995;45:1540–5.
doi: 10.1212/WNL.45.8.1540
pubmed: 7644055
Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.
doi: 10.1126/science.275.5308.1940
pubmed: 9072973
Bischoff-Grethe A, Ivry RB, Grafton ST. Cerebellar involvement in response reassignment rather than attention. J Neurosci. 2002;22:546–53.
doi: 10.1523/JNEUROSCI.22-02-00546.2002
pubmed: 11784801
pmcid: 6758676
Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memeory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.
doi: 10.1523/JNEUROSCI.17-24-09675.1997
pubmed: 9391022
pmcid: 6573411
Ryding E, Decety J, Sjoholm H, Stenberg G, Ingvar DH. Motor imagery activates the cerebellum regionally. A SPECT rCBF study with 99MTC-HMPAO. Brain Res Cogn Brain Res. 1993;1:94–9.
doi: 10.1016/0926-6410(93)90015-W
pubmed: 8513244
Yang H, Wang N, Luo X, Lv H, Liu H, Li Y, Fan G. Cerebellar atrophy and its contribution to motor and cognitive performance in multiple system atrophy. NeuroImage Clin. 2019;23:101891. https://doi.org/10.1016/j.nicl.2019.101891 .
doi: 10.1016/j.nicl.2019.101891
pubmed: 31226621
pmcid: 6587071
Del Campo N, Phillips O, Ory-Magne F, Brefel-Courbon C, Galitzky M, Thalamas C, Narr KL, Joshi S, Singh MK, Péran P, Pavy-LeTraon A, Rascol O. Broad white matter impairment in multiple system atrophy. Hum Brain Mapp. 2021;42(2):357–66.
doi: 10.1002/hbm.25227
pubmed: 33064319
Kawabata K, Hara K, Watanabe H, Bagarinao E, Ogura A, Masuda M, et al. Alterations in cognition-related cerebello-cerebral networks in multiple system atrophy. Cerebellum. 2019;18(4):770–80.
doi: 10.1007/s12311-019-01031-7
pubmed: 31069705
Gainotti G, Trojano L. Constructional apraxia. Handb Clin Neurol. 2018;151:331–48. https://doi.org/10.1016/B978-0-444-63622-5.00016-4 .
doi: 10.1016/B978-0-444-63622-5.00016-4
pubmed: 29519467
Makuuchi M, Kaminaga T, Sugishita M. Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res Cogn Brain Res. 2003;16:338–47.
doi: 10.1016/S0926-6410(02)00302-6
pubmed: 12706214
Greenlief CL, Margolis RB, Erker GJ. Application of the trail making test in differentiating neuropsychological impairment of elderly persons. Percept Mot Skills. 1985;61:1283–9.
doi: 10.2466/pms.1985.61.3f.1283
pubmed: 4094872
Rasmusson DX, Zonderman AB, Kawas CH, Resnick SM. Effects of age and dementia on the Trail Making Test. Clin Neuropsychol. 1998;2:169–78.
doi: 10.1076/clin.12.2.169.2005
Storandt M, Botwinick J, Danziger WL, Berg L, Hughes CP. Psychometric differentiation of mild senile dementia of the Alzheimer type. Arch Neurol. 1984;41:497–9.
doi: 10.1001/archneur.1984.04050170043013
pubmed: 6721715
Botwinick J, Storandt M, Berg L, Boland S. Senile dementia of the Alzheimer type: subject attrition and testability in research. Arch Neurol. 1988;45:493–6.
doi: 10.1001/archneur.1988.00520290021007
pubmed: 3258741
Cuoco S, Picillo M, Carotenuto I, Erro R, Catricalà E, Cappa S, Pellecchia MT, Barone P. The language profile in multiple system atrophy: an exploratory study. J Neural Transm (Vienna). 2021;128(8):1195–203. https://doi.org/10.1007/s00702-021-02372-6 .
doi: 10.1007/s00702-021-02372-6
pubmed: 34216238
Sugiyama A, Cooper G, Hirano S, Yokota H, Mori M, Shimizu K, Yakiyama M, Finke C, Brandt AU, Paul F, Kuwabara S. Cognitive impairment in multiple system atrophy is related to white matter damage detected by the T1-weighted/T2-weighted ratio. Eur Neurol. 2021;84(6):435–43.
doi: 10.1159/000517360
pubmed: 34284398
Wang N, Edmiston EK, Luo X, Yang H, Chang M, Wang F, Fan G. Comparing abnormalities of amplitude of low-frequency fluctuations in multiple system atrophy and idiopathic Parkinson’s disease measured with resting-state fMRI. Psychiatry Res Neuroimaging. 2017;30(269):73–81. https://doi.org/10.1016/j.pscychresns.2017.09.002 .
doi: 10.1016/j.pscychresns.2017.09.002
Kawai Y, Suenaga M, Takeda A, Ito M, Watanabe H, Tanaka F, Kato K, Fukatsu H, Naganawa S, Kato T, Ito K, Sobue G. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology. 2008;70(1390–1396):5.
Rosskopf J, Gorges M, Muller HP, Pinkhardt EH, Ludolph AC, Kassubek J. Hyperconnective and hypoconnective cortical and subcortical functional networks in multiple system atrophy. Parkinsonism Relat Disord. 2018;49:75–80.
doi: 10.1016/j.parkreldis.2018.01.012
pubmed: 29352721
Chelban V, Bocchetta M, Hassanein S, Haridy NA, Houlden H. Rohrer JD An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol. 2019;266:1036–45.
doi: 10.1007/s00415-018-9121-3
pubmed: 30460448