Evolution of transcriptional regulation of histidine metabolism in Gram-positive bacteria.
Bacteria
Comparative genomics
Histidine metabolism
RNA attenuation
Transcription regulation
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
25 Aug 2022
25 Aug 2022
Historique:
received:
26
07
2022
accepted:
27
07
2022
entrez:
25
8
2022
pubmed:
26
8
2022
medline:
30
8
2022
Statut:
epublish
Résumé
The histidine metabolism and transport (his) genes are controlled by a variety of RNA-dependent regulatory systems among diverse taxonomic groups of bacteria including T-box riboswitches in Firmicutes and Actinobacteria and RNA attenuators in Proteobacteria. Using a comparative genomic approach, we previously identified a novel DNA-binding transcription factor (named HisR) that controls the histidine metabolism genes in diverse Gram-positive bacteria from the Firmicutes phylum. Here we report the identification of HisR-binding sites within the regulatory regions of the histidine metabolism and transport genes in 395 genomes representing the Bacilli, Clostridia, Negativicutes, and Tissierellia classes of Firmicutes, as well as in 97 other HisR-encoding genomes from the Actinobacteria, Proteobacteria, and Synergistetes phyla. HisR belongs to the TrpR family of transcription factors, and their predicted DNA binding motifs have a similar 20-bp palindromic structure but distinct lineage-specific consensus sequences. The predicted HisR-binding motif was validated in vitro using DNA binding assays with purified protein from the human gut bacterium Ruminococcus gnavus. To fill a knowledge gap in the regulation of histidine metabolism genes in Firmicutes genomes that lack a hisR repressor gene, we systematically searched their upstream regions for potential RNA regulatory elements. As result, we identified 158 T-box riboswitches preceding the histidine biosynthesis and/or transport genes in 129 Firmicutes genomes. Finally, novel candidate RNA attenuators were identified upstream of the histidine biosynthesis operons in six species from the Bacillus cereus group, as well as in five Eubacteriales and six Erysipelotrichales species. The obtained distribution of the HisR transcription factor and two RNA-mediated regulatory mechanisms for histidine metabolism genes across over 600 species of Firmicutes is discussed from functional and evolutionary points of view.
Sections du résumé
BACKGROUND
BACKGROUND
The histidine metabolism and transport (his) genes are controlled by a variety of RNA-dependent regulatory systems among diverse taxonomic groups of bacteria including T-box riboswitches in Firmicutes and Actinobacteria and RNA attenuators in Proteobacteria. Using a comparative genomic approach, we previously identified a novel DNA-binding transcription factor (named HisR) that controls the histidine metabolism genes in diverse Gram-positive bacteria from the Firmicutes phylum.
RESULTS
RESULTS
Here we report the identification of HisR-binding sites within the regulatory regions of the histidine metabolism and transport genes in 395 genomes representing the Bacilli, Clostridia, Negativicutes, and Tissierellia classes of Firmicutes, as well as in 97 other HisR-encoding genomes from the Actinobacteria, Proteobacteria, and Synergistetes phyla. HisR belongs to the TrpR family of transcription factors, and their predicted DNA binding motifs have a similar 20-bp palindromic structure but distinct lineage-specific consensus sequences. The predicted HisR-binding motif was validated in vitro using DNA binding assays with purified protein from the human gut bacterium Ruminococcus gnavus. To fill a knowledge gap in the regulation of histidine metabolism genes in Firmicutes genomes that lack a hisR repressor gene, we systematically searched their upstream regions for potential RNA regulatory elements. As result, we identified 158 T-box riboswitches preceding the histidine biosynthesis and/or transport genes in 129 Firmicutes genomes. Finally, novel candidate RNA attenuators were identified upstream of the histidine biosynthesis operons in six species from the Bacillus cereus group, as well as in five Eubacteriales and six Erysipelotrichales species.
CONCLUSIONS
CONCLUSIONS
The obtained distribution of the HisR transcription factor and two RNA-mediated regulatory mechanisms for histidine metabolism genes across over 600 species of Firmicutes is discussed from functional and evolutionary points of view.
Identifiants
pubmed: 36008760
doi: 10.1186/s12864-022-08796-y
pii: 10.1186/s12864-022-08796-y
pmc: PMC9413887
doi:
Substances chimiques
Riboswitch
0
Transcription Factors
0
Histidine
4QD397987E
DNA
9007-49-2
Types de publication
Journal Article
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
558Subventions
Organisme : Russian Science Foundation
ID : 18-14-00358
Organisme : NIGMS NIH HHS
ID : DK030292-35
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
FEBS Lett. 2010 Jan 21;584(2):318-24
pubmed: 19932103
Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14
pubmed: 24293654
Microb Genom. 2016 Jan 18;2(1):e000047
pubmed: 28348826
Annu Rev Genet. 1982;16:113-34
pubmed: 6186194
J Bacteriol. 2013 Jun;195(11):2463-73
pubmed: 23504016
Environ Microbiol Rep. 2015 Apr;7(2):204-10
pubmed: 25345570
Microb Biotechnol. 2014 Jan;7(1):5-25
pubmed: 23617600
Microbiol Rev. 1996 Mar;60(1):44-69
pubmed: 8852895
FEMS Microbiol Lett. 2004 May 15;234(2):357-70
pubmed: 15135544
Chem Rev. 2007 Aug;107(8):3467-97
pubmed: 17636889
BMC Genomics. 2011 Jun 15;12 Suppl 1:S3
pubmed: 21810205
BMC Evol Biol. 2007 Aug 16;7 Suppl 2:S4
pubmed: 17767732
Nucleic Acids Res. 2017 Apr 20;45(7):3785-3799
pubmed: 28073944
IEEE/ACM Trans Comput Biol Bioinform. 2022 May-Jun;19(3):1850-1860
pubmed: 33237866
Bioinformatics. 2012 Apr 15;28(8):1166-7
pubmed: 22368248
J Bacteriol. 2011 Jul;193(13):3228-40
pubmed: 21531804
J Bacteriol. 1999 Apr;181(7):2026-37
pubmed: 10094678
Biochemistry. 2002 Dec 17;41(50):14866-78
pubmed: 12475235
Phytopathology. 2018 May;108(5):542-551
pubmed: 29256829
Can J Microbiol. 2010 Feb;56(2):178-87
pubmed: 20237580
Bioinformatics. 2016 Mar 1;32(5):776-8
pubmed: 26519506
Amino Acids. 2006 Mar;30(2):127-42
pubmed: 16547652
Front Microbiol. 2014 Jun 11;5:294
pubmed: 24966856
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
pubmed: 12824337
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Environ Microbiol. 2014 Jan;16(1):1-8
pubmed: 24118949
Nucleic Acids Res. 2003 Dec 1;31(23):6748-57
pubmed: 14627808
Mol Biol (Mosk). 2000 Mar-Apr;34(2):253-62
pubmed: 10779952
J Mol Evol. 1995 Dec;41(6):760-74
pubmed: 8587121
J Mol Evol. 2006 Jun;62(6):807-8
pubmed: 16612542
J Mol Evol. 2005 Mar;60(3):378-90
pubmed: 15871048
J Mol Evol. 2009 Nov;69(5):512-26
pubmed: 19888544
Nucleic Acids Res. 2018 Jan 4;46(D1):D335-D342
pubmed: 29112718
BMC Bioinformatics. 2004 Aug 19;5:113
pubmed: 15318951
Appl Microbiol Biotechnol. 2015 Apr;99(8):3547-58
pubmed: 25529314
RNA. 2008 Apr;14(4):717-35
pubmed: 18359782
EcoSal Plus. 2009 Aug;3(2):
pubmed: 26443768
Front Microbiol. 2013 Dec 23;4:407
pubmed: 24391637
Microbiol Spectr. 2018 Jul;6(4):
pubmed: 30051797
Nucleic Acids Res. 2004 Jun 23;32(11):3340-53
pubmed: 15215334
Bioinformatics. 2013 Nov 15;29(22):2933-5
pubmed: 24008419
Gene. 1994 Dec 2;150(1):1-8
pubmed: 7959032
J Bacteriol. 2018 Feb 07;200(5):
pubmed: 29229699
Microb Genom. 2016 Jul 11;2(7):e000061
pubmed: 28348857