Validation of reference genes as an internal control for studying Avena sativa-Puccinia coronata interaction by RT-qPCR.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 08 2022
26 08 2022
Historique:
received:
21
04
2022
accepted:
18
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
31
8
2022
Statut:
epublish
Résumé
In this study we evaluated eleven candidate reference genes in Avena sativa during compatible and incompatible interactions with two different pathotypes of Puccinia coronata f. sp. avenae in six time points post-inoculation. The identification of genes with high expression stability was performed by four algorithms (geNorm, NormFinder, BestKeeper and ΔCt method). The results obtained confirmed that the combination of two genes would be sufficient for reliable normalization of the expression data. In general, the most stable in the tested plant-pathogen system were HNR (heterogeneous nuclear ribonucleoprotein 27C) and EF1A (elongation factor 1-alpha). ARF (ADP-ribosylation factor) and EIF4A (eukaryotic initiation factor 4A-3) could also be considered as exhibiting high expression stability. CYP (cyclophilin) was shown by all assessment methods to be the worst candidate for normalization in this dataset. To date, this is the first report of reference genes selection in A. sativa-P. coronata interaction system. Identified reference genes enable reliable and comprehensive RT-qPCR analysis of oat gene expression in response to crown rust infection. Understanding the molecular mechanisms involved in the host-pathogen interactions may expand knowledge of durable resistance strategies beneficial to modern oat breeding.
Identifiants
pubmed: 36028746
doi: 10.1038/s41598-022-18746-z
pii: 10.1038/s41598-022-18746-z
pmc: PMC9418433
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14601Informations de copyright
© 2022. The Author(s).
Références
Stewart, D. & McDougall, G. Oat agriculture, cultivation and breeding targets: Implications for human nutrition and health. Br. J. Nutr. 112(Suppl), S50–S57 (2014).
pubmed: 25267245
doi: 10.1017/S0007114514002736
Boczkowska, M., Podyma, W. & Łapiński, B. Oat. in Genetic and Genomic Resources for Grain Cereals Improvement (eds. Singh, M. & Upadhyaya, H. D.) 159–225 (Elsevier, 2016).. https://doi.org/10.1016/B978-0-12-802000-5.00004-6 .
Chaves, M. S., Martinelli, J. A., Wesp, C. de L. & Graichen, F. A. S. The cereal rusts: An overview. Pest Technol. 2, 38–55 (2008).
Fetch, T. G., McCallum, B., Menzies, J., Rashid, K. & Tenuta, A. Rust diseases in Canada. PS&C 4, 86–96 (2011).
Sowa, S. & Paczos-Grzȩda, E. Virulence structure of Puccinia coronata f. sp. avenae and effectiveness of Pc resistance genes in Poland during 2017–2019. Phytopathology 111(7), 1158–1165 (2021).
pubmed: 33225832
doi: 10.1094/PHYTO-10-20-0457-R
Paczos-Grzȩda, E. & Sowa, S. Virulence structure and diversity of Puccinia coronata f. sp. avenae P. syd. & syd. in Poland during 2013 to 2015. Plant Dis. 103, 1559–1564 (2019).
pubmed: 31025903
doi: 10.1094/PDIS-10-18-1820-RE
Cabral, A. L. et al. Oat fungal diseases and the application of molecular marker technology for their control. in Future Challenges in Crop Protection Against Fungal Pathogens (eds. Goyal, A. & Manoharachary, C.) 343–358 (Springer Science+Business Media, 2014). https://doi.org/10.1007/978-1-4939-1188-2 .
Nazareno, E. S. et al. Puccinia coronata f. sp. avenae: A threat to global oat production. Mol. Plant Pathol. 19, 1047–1060 (2018).
pubmed: 28846186
doi: 10.1111/mpp.12608
Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).
pubmed: 19246619
doi: 10.1373/clinchem.2008.112797
Kozera, B. & Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 54, 391–406 (2013).
pubmed: 24078518
pmcid: 3825189
doi: 10.1007/s13353-013-0173-x
Thellin, O. et al. Housekeeping genes as internal standards: Use and limits. J. Biotechnol. 75, 291–295 (1999).
pubmed: 10617337
doi: 10.1016/S0168-1656(99)00163-7
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
pubmed: 18546601
doi: 10.1038/nprot.2008.73
Gutierrez, L. et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6, 609–618 (2008).
pubmed: 18433420
doi: 10.1111/j.1467-7652.2008.00346.x
Guenin, S. et al. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 60, 487–493 (2009).
pubmed: 19264760
doi: 10.1093/jxb/ern305
Jaiswal, P. S., Kaur, N. & Randhawa, G. S. Identification of reference genes for real-time PCR gene expression studies during seed development and under abiotic stresses in Cyamopsis tetragonoloba (L.) Taub. bioRxiv preprint (2018).
Saddhe, A. A., Malvankar, M. R. & Kumar, K. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata. PeerJ 6, e5226 (2018).
pubmed: 30013853
pmcid: 6046198
doi: 10.7717/peerj.5226
Zhang, L. et al. Reference genes identification for normalization of qPCR under multiple stresses in Hordeum brevisubulatum. Plant Methods 14, 110 (2018).
pubmed: 30568722
pmcid: 6297944
doi: 10.1186/s13007-018-0379-3
Zhou, W. et al. Reference genes for qRT-PCR normalisation in different tissues, developmental stages, and stress conditions of Hypericum perforatum. PeerJ 7, e7133 (2019).
pubmed: 31259099
pmcid: 6589333
doi: 10.7717/peerj.7133
Cai, J. et al. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS ONE 13, 1–19 (2018).
doi: 10.1371/journal.pone.0190559
Wrzesińska, B., Kierzek, R. & Obrępalska-Stęplowska, A. Evaluation of six commonly used reference genes for gene expression studies in herbicide-resistant Avena fatua biotypes. Weed Res. 56, 284–292 (2016).
doi: 10.1111/wre.12209
Liu, J. et al. Selection and evaluation of potential reference genes for gene expression analysis in Avena fatua. Plant Prot. Sci. 55, 61–71 (2019).
doi: 10.17221/20/2018-PPS
Akbarabadi, A., Ismaili, A., Kahrizi, D. & Firouzabadi, F. N. Validation of expression stability of reference genes in response to herbicide stress in wild oat (Avena ludoviciana). Cell. Mol. Biol. 64, 113–118 (2018).
pubmed: 29631693
doi: 10.14715/cmb/2018.64.4.19
Ruduś, I. & Kępczyński, J. Reference gene selection for molecular studies of dormancy in wild oat (Avena fatua L.) caryopses by RT-qPCR method. PLoS ONE 13, e0192343 (2018).
pubmed: 29390041
pmcid: 5794185
doi: 10.1371/journal.pone.0192343
Bekele, W. A., Wight, C. P., Chao, S., Howarth, C. J. & Tinker, N. A. Haplotype based genotyping-by-sequencing in oat genome research. Plant Biotechnol. J. 16, 1452–1463 (2018).
pubmed: 29345800
pmcid: 6041447
doi: 10.1111/pbi.12888
Chaffin, A. S. et al. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement. Plant Genome 9(2), 1–35 (2016).
doi: 10.3835/plantgenome2015.10.0102
Zeng, L., Deng, R., Guo, Z., Yang, S. & Deng, X. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics 17, 1–10 (2016).
doi: 10.1186/s12864-016-2527-3
Yang, Z., Wang, K., Aziz, U., Zhao, C. & Zhang, M. Evaluation of duplicated reference genes for quantitative real-time PCR analysis in genome unknown hexaploid oat (Avena sativa L.). Plant Methods 16, 1–14 (2020).
doi: 10.1186/s13007-020-00679-1
Sowa, S. et al. Resistance to Puccinia coronata f. sp. avenae in Avena magna, A. murphyi, and A. insularis. Plant Dis. 100, 1184–1191 (2016).
pubmed: 30682272
doi: 10.1094/PDIS-06-15-0671-RE
Paczos-Grzęda, E., Sowa, S., Boczkowska, M. & Langdon, T. Detached leaf assays for resistance to crown rust reveal diversity within populations of Avena sterilis L. Plant Dis. 103, 832–840 (2018).
doi: 10.1094/PDIS-06-18-1045-RE
Paczos-Grzęda, E., Sowa, S., Koroluk, A. & Langdon, T. Characteristics of resistance to Puccinia coronata f. sp. avenae in Avena fatua. Plant Dis. 102, 1–9 (2018).
doi: 10.1094/PDIS-03-18-0528-RE
Paczos-Grzęda, E., Boczkowska, M., Sowa, S., Koroluk, A. & Toporowska, J. Hidden diversity of crown rust resistance within genebank resources of Avena sterilis L. Agronomy 11, 1–14 (2021).
doi: 10.3390/agronomy11020315
Sowa, S. & Paczos-Grzęda, E. A study of crown rust resistance in historical and modern oat cultivars representing 120 years of Polish oat breeding. Euphytica 216, 1–10 (2020).
doi: 10.1007/s10681-019-2545-8
Carson, M. L. Virulence in oat crown rust (Puccinia coronata f. sp. avenae) in the United States from 2006 through 2009. Plant Dis. 95, 1528–1534 (2011).
pubmed: 30732001
doi: 10.1094/PDIS-09-10-0639
Chong, J. et al. Virulence of Puccinia coronata f. sp. avenae in the eastern prairie region of Canada during 2007–2009. Can. J. Plant Pathol. 33, 77–87 (2011).
doi: 10.1080/07060661.2010.546957
Menzies, J. G., Xue, A., Dueck, R. & Greunke, J. Virulence of Puccinia coronata f. sp. avenae in Canada; 2010 to 2014. In 14th International Cereal Rust and Powdery Mildew Conference 5–8 July 2015 95 (2015).
Fleischmann, G. & McKenzie, R. I. H. Inheritance of crown rust resistance in Avena sterilis L. Crop Sci. 8, 710–713 (1968).
doi: 10.2135/cropsci1968.0011183X000800060020x
Chong, J., Leonard, K. J. & Salmeron, J. J. A North American system of nomenclature for Puccinia coronata f. sp. avenae. Plant Dis. 84, 580–585 (2000).
pubmed: 30841353
doi: 10.1094/PDIS.2000.84.5.580
Sowa, S. & Paczos-Grzęda, E. Virulence structure of Puccinia coronata f. sp. avenae and effectiveness of Pc resistance genes in Poland during 2017–2019. Phytopathology 111, 1158–1165 (2021).
pubmed: 33225832
doi: 10.1094/PHYTO-10-20-0457-R
Sowa, S. & Paczos-Grzęda, E. Puccinia coronata f. sp. avenae virulence in south-eastern Poland in 2014. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 336(43), 157–166 (2017).
doi: 10.21005/AAPZ2017.43.3.17
Hsam, S. L. K. et al. Genetic studies of powdery mildew resistance in common oat (Avena sativa L.) I. Cultivars and breeding lines grown in Western Europe and North America. Euphytica 96, 421–427 (1997).
doi: 10.1023/A:1003057505151
Sozoniuk, M., Parzymies, M., Kozak, D. & Ismael, B. S. Carex muskingumensis and osmotic stress: Identification of reference genes for transcriptional profiling by RT-qPCR. Genes 11, 1–14 (2020).
doi: 10.3390/genes11091022
Dudziak, K. et al. Identification of stable reference genes for qPCR studies in common wheat (Triticum aestivum L.) seedlings under short-term drought stress. Plant Methods 16, 1–8 (2020).
doi: 10.1186/s13007-020-00601-9
Tajti, J., Pál, M. & Janda, T. Validation of reference genes for studying different abiotic stresses in oat (Avena sativa L.) by RT-qPCR. Plants 10, 1–19 (2021).
doi: 10.3390/plants10071272
Gutierrez-Gonzalez, J. J., Tu, Z. J. & Garvin, D. F. Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics 14, 66 (2013).
doi: 10.1186/1471-2164-14-471
Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).
pubmed: 15127793
doi: 10.1023/B:BILE.0000019559.84305.47
Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).
pubmed: 15289330
doi: 10.1158/0008-5472.CAN-04-0496
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1–12 (2002).
doi: 10.1186/gb-2002-3-7-research0034
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).
pubmed: 11846609
doi: 10.1006/meth.2001.1262
Chapman, J. R. & Waldenström, J. With reference to reference genes: A systematic review of endogenous controls in gene expression studies. PLoS ONE 10, e0141853 (2015).
pubmed: 26555275
pmcid: 4640531
doi: 10.1371/journal.pone.0141853
Zhu, H., Ma, Y. & Guo, Q. Expression stability of internal reference gene in response to Trichoderma polysporum infection in Avena fatua L. Curr. Genet. https://doi.org/10.1007/s00294-021-01200-4 (2021).
doi: 10.1007/s00294-021-01200-4
pubmed: 34287660
Brunner, A. M., Yakovlev, I. A. & Strauss, S. H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 4, 1–7 (2004).
doi: 10.1186/1471-2229-4-14
Rego, E. C. S. et al. Stable reference genes for RT-qPCR analysis of gene expression in the Musa acuminata-Pseudocercospora musae interaction. Sci. Rep. 9, 66 (2019).
doi: 10.1038/s41598-019-51040-z
Satapathy, L., Kumar, D., Kumar, M. & Mukhopadhyay, K. Functional and DNA–protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L). 3 Biotech 8, 40 (2018).
pubmed: 29291153
doi: 10.1007/s13205-017-1064-3
Zhou, Y., Hu, L., Wu, H., Jiang, L. & Liu, S. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genomics 2017, 66 (2017).
doi: 10.1155/2017/7243973
Wei, L. et al. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front. Plant Sci. 6, 66 (2015).
doi: 10.3389/fpls.2015.00458
Prasad, P. et al. Evaluation of candidate reference genes for normalization of RT-qPCR data in wheat during pre-haustorial stages of Puccinia triticina infection. Trop. Plant Pathol. 45, 96–101 (2020).
doi: 10.1007/s40858-019-00320-0
Silver, N., Best, S., Jiang, J. & Thein, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 1–9 (2006).
doi: 10.1186/1471-2199-7-33
Wang, B. et al. Systematic selection and validation of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Nitraria tangutorum. Sci. Rep. 10, 1–10 (2020).
Berka, M., Kopecká, R., Berková, V., Brzobohatý, B. & Černý, M. Regulation of heat shock proteins 70 and their role in plant immunity. J. Exp. Bot. https://doi.org/10.1093/jxb/erab549 (2022).
doi: 10.1093/jxb/erab549
pubmed: 35022724
pmcid: 8982422