Quantification of CGRP-immunoreactive myenteric neurons in mouse colon.


Journal

The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 08 08 2022
received: 12 06 2022
accepted: 17 08 2022
pubmed: 1 9 2022
medline: 22 10 2022
entrez: 31 8 2022
Statut: ppublish

Résumé

Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 μm

Identifiants

pubmed: 36043843
doi: 10.1002/cne.25403
doi:

Substances chimiques

Calcitonin Gene-Related Peptide JHB2QIZ69Z
Peripherins 0
Nitric Oxide Synthase EC 1.14.13.39
Colchicine SML2Y3J35T

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3209-3225

Subventions

Organisme : Australian Research Council
ID : DP190103628
Organisme : National Health and Medical Research Council
ID : 1127140
Organisme : National Health and Medical Research Council
ID : 1156416

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Ahmadzai, M. M., Seguella, L., & Gulbransen, B. D. (2021). Circuit-specific enteric glia regulate intestinal motor neurocircuits. Proceedings of the National Academy of Sciences of the United States of America, 118, e2025938118.
Ahmadzai, M. M., McClain, J. L., Dharshika, C., Seguella, L., Giancola, F., De Giorgio, R., & Gulbransen, B. D. (2022). LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction. Journal of Clinical Investigation, 132, e149464.
Anitha, M., Chandrasekharan, B., Salgado, J. R., Grouzmann, E., Mwangi, S., Sitaraman, S. V., & Srinivasan, S. (2006). Glial-derived neurotrophic factor modulates enteric neuronal survival and proliferation through neuropeptide Y. Gastroenterology, 131, 1164-1178.
Anitha, M., Joseph, I., Ding, X., Torre, E. R., Sawchuk, M. A., Mwangi, S., Hochman, S., Sitaraman, S. V., Anania, F., & Srinivasan, S. (2008). Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology, 134, 1424-1435.
Beraldi, E. J., Soares, A., Borges, S. C., de Souza, A. C., Natali, M. R., Bazotte, R. B., & Buttow, N. C. (2015). High-fat diet promotes neuronal loss in the myenteric plexus of the large intestine in mice. Digestive Diseases and Sciences, 60, 841-849.
Boissel, J. P., Schwarz, P. M., & Förstermann, U. (1998). Neuronal-type NO synthase: Transcript diversity and expressional regulation. Nitric Oxide, 2, 337-349.
Bornstein, J., Furness, J., & Kunze, W. (1994). Electrophysiological characterization of myenteric neurons: How do classification schemes relate? Journal of the Autonomic Nervous System, 48, 1-15.
Bornstein, J. C., Furness, J. B., Kelly, H. F., Bywater, R. A., Neild, T. O., & Bertrand, P. P. (1997). Computer simulation of the enteric neural circuits mediating an ascending reflex: Roles of fast and slow excitatory outputs of sensory neurons. Journal of the Autonomic Nervous System, 64, 143-157.
Brehmer, A., Lindig, T., Schrödl, F., Neuhuber, W., Ditterich, D., Rexer, M., & Rupprecht, H. (2005). Morphology of enkephalin-immunoreactive myenteric neurons in the human gut. Histochemistry and Cell Biology, 123, 131-138.
Brehmer, A. (2007). The value of neurofilament-immunohistochemistry for identifying enteric neuron types-Special reference to intrinsic primary afferent (sensory) neurons. In R. K. Arlen (Ed.), New research on neurofilament proteins (pp. 99-114). Nova Science.
Brookes, S., Hennig, G., & Schemann, M. (1998). Identification of motor neurons to the circular muscle of the guinea pig gastric corpus. The Journal of Comparative Neurology, 397, 268-280.
Brumovsky, P. R., Robinson, D. R., La, J. H., Seroogy, K. B., Lundgren, K. H., Albers, K. M., Kiyatkin, M. E., Seal, R. P., Edwards, R. H., Watanabe, M., Hokfelt, T., & Gebhart, G. E. (2011). Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum. The Journal of Comparative Neurology, 519, 3346-3366.
Brumovsky, P. R., La, J. H., McCarthy, C. J., Hökfelt, T., & Gebhart, G. F. (2012). Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience, 223, 77-91.
Carbone, S. E., Jovanovska, V., Nurgali, K., & Brookes, S. J. (2014). Human enteric neurons: Morphological, electrophysiological, and neurochemical identification. Neurogastroenterology & Motility, 26, 1812-1816.
Cattaruzza, F., Spreadbury, I., Miranda-Morales, M., Grady, E. F., Vanner, S., & Bunnett, N. W. (2010). Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. American Journal of Physiology, 298, G81-G91.
Christianson, J. A., McIlwrath, S. L., Koerber, H. R., & Davis, B. M. (2006). Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents. Neuroscience, 140, 247-257.
Christianson, J. A., Traub, R. J., & Davis, B. M. (2006). Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat. The Journal of Comparative Neurology, 494, 246-259.
Costa, M., Brookes, S., Steeled, P., Gibbins, I., Burcher, E., & Kandiah, C. (1996). Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience, 75, 949-967.
Costa, M., Keightley, L. J., Hibberd, T. J., Wiklendt, L., Smolilo, D. J., Dinning, P. G., Brookes, S. J., & Spencer, N. J. (2021). Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterology and Motility, 33, e14047.
De Jonge, F., Van Nassauw, L., Adriaensen, D., Van Meir, F., Miller, H. R., Van Marck, E., & Timmermans, J. P. (2003). Effect of intestinal inflammation on capsaicin-sensitive afferents in the ileum of Schistosoma mansoni-infected mice. Histochemistry & Cell Biology, 119, 477-484.
Domeneghini, C., Radaelli, G., Arrighi, S., Bosi, G., & Dolera, M. (2004). Cholinergic, nitrergic and peptidergic (Substance P-and CGRP-utilizing) innervation of the horse intestine. A histochemical and immunohistochemical study. Histology and Histopathology, 19, 357-370.
Fantaguzzi, C. M., Thacker, M., Chiocchetti, R., & Furness, J. B. (2009). Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell and Tissue Research, 336, 179-189.
Feng, J., Hibberd, T. J., Luo, J., Yang, P., Xie, Z., Travis, L., Spencer, N. J., & Hu, H. (2022). Modification of neurogenic colonic motor behaviours by chemogenetic ablation of calretinin neurons. Frontiers in Cellular Neuroscience, 16, 799717.
Findlater, J. (2010). Peripherin-28 as a biomarker of ALS: A methodological study (MSc thesis). University of Toronto.
Furness, J., Costa, M., Gibbins, I., Llewellyn-Smith, I., & Oliver, J. (1985). Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell and Tissue Research, 241, 155-163.
Furness, J., Trussell, D., Pompolo, S., Bornstein, J., & Smith, T. (1990). Calbindin neurons of the guinea-pig small intestine: Quantitative analysis of their numbers and projections. Cell and Tissue Research, 260, 261-272.
Furness, J. B., Jones, C., Nurgali, K., & Clerc, N. (2004). Intrinsic primary afferent neurons and nerve circuits within the intestine. Progress in Neurobiology, 72, 143-164.
Furness, J. B., Robbins, H. L., Xiao, J., Stebbing, M. J., & Nurgali, K. (2004). Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell and Tissue Research, 317, 1-12.
Furness, J. B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology and Hepatology, 9, 286-294.
Gamage, P. P., Ranson, R. N., Patel, B. A., Yeoman, M. S., & Saffrey, M. J. (2013). Myenteric neuron numbers are maintained in aging mouse distal colon. Neurogastroenterology and Motility, 25, e495-e505.
Gibbins, I. L., Furness, J. B., Costa, M., MacIntyre, I., Hillyard, C. J., & Girgis, S. (1985). Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neuroscience Letters, 57, 125-130.
Gombash, S. E., Cowley, C. J., Fitzgerald, J. A., Hall, J. C., Mueller, C., Christofi, F. L., & Foust, K. D. (2014). Intravenous AAV9 efficiently transduces myenteric neurons in neonate and juvenile mice. Frontiers in Molecular Neuroscience, 7, 81.
Green, T., & Dockray, G. J. (1988). Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Neuroscience, 25, 181-193.
Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W., & Isacson, O. (2012). α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiology of Disease, 47, 258-267.
Hibberd, T. J., Travis, L., Wiklendt, L., Costa, M., Brookes, S. J. H., Hu, H., Keating, D. J., & Spencer, N. J. (2018). Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. American Journal of Physiology - Gastrointestinal & Liver Physiology, 314, G53-G64.
Hibberd, T. J., Costa, M. C., Smolilo, D. J., Keightley, L. J., Brookes, S. J. H., Dinning, P. G., & Spencer, N. J. (2022). Mechanisms underlying initiation of propulsion in guinea pig distal colon. American Journal of Physiology - Gastrointestinal & Liver Physiology, 323(2), G71-G87.
Hoff, S., Zeller, F., von Weyhern, C. W. H., Wegner, M., Schemann, M., Michel, K., & Ruhl, A. (2008). Quantitative assessment of glial cells in the human and guinea rig enteric nervous system with an anti-sox8/9/10 antibody. The Journal of Comparative Neurology, 509, 356-371.
Hu, H. Z., Gao, N., Lin, Z., Gao, C., Liu, S., Ren, J., Xia, Y., & Wood, J. D. (2001). P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. Journal of Comparative Neurology, 440, 299-310.
Humenick, A., Chen, B. N., Lauder, C. I. W., Wattchow, D. A., Zagorodnyuk, V. P., Dinning, P. G., Spencer, N. J., Costa, M., & Brookes, S. J. H. (2019). Characterization of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterology and Motility, 31, e13685.
Humenick, A., Chen, B. N., Wattchow, D. A., Zagorodnyuk, V. P., Dinning, P. G., Spencer, N. J., Costa, M., & Brookes, S. J. H. (2021). Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterology and Motility, 33, e13964.
Kapp, S., Schrödl, F., Neuhuber, W., & Brehmer, A. (2006). Chemical coding of submucosal type V neurons in porcine ileum. Cells Tissues Organs, 184, 31-41.
Kunze, W. A., Bornstein, J. C., & Furness, J. B. (1995). Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience, 66, 1-4.
Kunze, W. A. A., & Furness, J. B. (1999). The enteric nervous system and regulation of intestinal motility. Annual Review of Physiology, 61, 117-142.
Li, Z., Hao, M. M., Van den Haute, C., Baekelandt, V., Boesmans, W., & Vanden Berghe, P. (2019). Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. Elife, 8, e42914.
Lomax, A., Sharkey, K., Bertrand, P., Low, A., Bornstein, J., & Furness, J. (1999). Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. Journal of the Autonomic Nervous System, 76, 45-61.
Maifrino, L., Liberti, E., & De Souza, R. (2007). Morphological and quantitative study of the myenteric plexus of the mouse colon. Brazilian Journal of Morphological Sciences, 24, 192-195.
Mann, P. T., Southwell, B. R., Ding, Y. Q., Shigemoto, R., Mizuno, N., & Furness, J. B. (1997). Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell and Tissue Research, 289, 1-9.
Mann, P. T., Furness, J. B., & Southwell, B. R. (1999). Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell and Tissue Research, 297, 241-248.
Mao, Y., Wang, B., & Kunze, W. (2006). Characterization of myenteric sensory neurons in the mouse small intestine. Journal of Neurophysiology, 96, 998-1010.
Máté, Z., Poles, M. Z., Szabó, G., Bagyánszki, M., Talapka, P., Fekete, E., & Bódi, N. (2013). Spatiotemporal expression pattern of DsRedT3/CCK gene construct during postnatal development of myenteric plexus in transgenic mice. Cell & Tissue Research, 352, 199-206.
Mazzuoli, G., Mazzoni, M., Albanese, V., Clavenzani, P., Lalatta-Costerbosa, G., Lucchi, M. L., Furness, J. B., & Chiocchetti, R. (2007). Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290, 1480-1491.
McCoy, E. S., Taylor-Blake, B., & Zylka, M. J. (2012). CGRPα-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch. PLoS ONE, 7, e36355.
McLean, J., Liu, H. N., Miletic, D., Weng, Y. C., Rogaeva, E., Zinman, L., Kriz, J., & Robertson, J. (2010). Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease. Journal of Neurochemistry, 114, 1177-1192.
McQuade, R. M., Carbone, S. E., Stojanovska, V., Rahman, A., Gwynne, R. M., Robinson, A. M., Goodman, C. A., Bornstein, J. C., & Nurgali, K. (2016). Role of oxidative stress in oxaliplatin-induced enteric neuropathy and colonic dysmotility in mice. British Journal of Pharmacology, 173, 3502-3521.
McQuade, R. M., Stojanovska, V., Donald, E., Abalo, R., Bornstein, J. C., & Nurgali, K. (2016). Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterology & Motility, 28, 1861-1875.
Messenger, J. P., & Furness, J. B. (1990). Projections of chemically-specified neurons in the guinea-pig colon. Archives of Histology and Cytology, 53, 467-495.
Michel, N., Narayanan, P., Shomroni, O., & Schmidt, M. (2020). Maturational changes in mouse cutaneous touch and Piezo2-mediated mechanotransduction. Cell Reports, 32, 107912.
Mitchell, R., Mikolajczak, M., Kersten, C., & Fleetwood-Walker, S. (2020). ErbB1-dependent signalling and vesicular trafficking in primary afferent nociceptors associated with hypersensitivity in neuropathic pain. Neurobiology of Disease, 142, 104961.
Mitsui, R. (2009). Characterisation of calcitonin gene-related peptide-immunoreactive neurons in the myenteric plexus of rat colon. Cell and Tissue Research, 337, 37-43.
Mulderry, P., Ghatei, M., Spokes, R., Jones, P., Pierson, A., Hamid, Q., Kanse, S., Amara, S., Burrin, J., & Legon, S. (1988). Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience, 25, 195-205.
Murphy, E., Defontgalland, D., Costa, M., Brookes, S., & Wattchow, D. (2007). Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterology & Motility, 19, 126-134.
Nestor-Kalinoski, A., Smith-Edwards, K. M., Meerschaert, K., Margiotta, J. F., Rajwa, B., Davis, B. M., & Howard, M. J. (2022). Unique neural circuit connectivity of mouse proximal, middle, and distal colon defines regional colonic motor patterns. Cellular and Molecular Gastroenterology and Hepatology, 13(1), 309.e3-337.e3.
Noorian, A. R., Taylor, G. M., Annerino, D. M., & Greene, J. G. (2011). Neurochemical phenotypes of myenteric neurons in the rhesus monkey. The Journal of Comparative Neurology, 519, 3387-3401.
Nurgali, K., Stebbing, M. J., & Furness, J. B. (2004). Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. The Journal of Comparative Neurology, 468, 112-124.
Okuda-Ashitaka, E., Kakuchi, Y., Kakumoto, H., Yamanishi, S., Kamada, H., Yoshidu, T., Matsukawa, S., Ogura, N., Uto, S., Minami, T., Ito, S., & Matsumoto, K. I. (2020). Mechanical allodynia in mice with tenascin-X deficiency associated with Ehlers-Danlos syndrome. Science Reports, 10, 6569.
Olsson, C., Chen, B. N., Jones, S., Chataway, T. K., Costa, M., & Brookes, S. J. H. (2006). Comparison of extrinsic efferent innervation of guinea pig distal colon and rectum. Journal of Comparative Neurology, 496, 787-801.
Olsson, C. (2011a). Calbindin immunoreactivity in the enteric nervous system of larval and adult zebrafish (Danio rerio). Cell and Tissue Research, 344(1), 31-40.
Olsson, C. (2011b). Calbindin-immunoreactive cells in the fish enteric nervous system. Autonomic Neuroscience, 159, 7-14.
Parathan, P., Wang, Y., Leembruggen, A. J., Bornstein, J. C., & Foong, J. P. (2020). The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Developmental Biology, 458, 75-87.
Pascale, A., Gusev, P. A., Amadio, M., Dottorini, T., Govoni, S., Alkon, D. L., & Quattrone, A. (2004). Increase of the RNA-binding protein HuD and posttranscriptional up-regulation of the GAP-43 gene during spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 101, 1217-1222.
Pelayo, J.-C., Veldhuis, N. A., Eriksson, E. M., Bunnett, N. W., & Poole, D. P. (2014). Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell and Tissue Research, 356, 319-332.
Phillips, R. J., Hargrave, S. L., Rhodes, B. S., Zopf, D. A., & Powley, T. L. (2004). Quantification of neurons in the myenteric plexus: An evaluation of putative pan-neuronal markers. Journal of Neuroscience Methods, 133, 99-107.
Porter, A., Wattchow, D., Brookes, S., & Costa, M. (1997). The neurochemical coding and projections of circular muscle motor neurons in the human colon. Gastroenterology, 113, 1916-1923.
Porter, A., Wattchow, D., Brookes, S., & Costa, M. (2002). Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut, 51, 70-75.
Powell, A. K., O'Brien, S. D., Fida, R., & Bywater, R. A. R. (2002). Neural integrity is essential for the propagation of colonic migrating motor complexes in the mouse. Neurogastroenterology & Motility, 14, 495-504.
Qu, Z. D., Thacker, M., Castelucci, P., Bagyánszki, M., Epstein, M. L., & Furness, J. B. (2008). Immunohistochemical analysis of neuron types in the mouse small intestine. Cell and Tissue Research, 334, 147-161.
Reichardt, F., Chassaing, B., Nezami, B. G., Li, G., Tabatabavakili, S., Mwangi, S., Uppal, K., Liang, B., Vijay-Kumar, M., Jones, D., Gewirtz, A. T., & Srinivasan, S. (2017). Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. Journal of Physiology, 595, 1831-1846.
Ro, S., Hwang, S. J., Muto, M., Jewett, W. K., & Spencer, N. J. (2006). Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 290, G710-G718.
Roberts, R. R., Bornstein, J. C., Bergner, A. J., & Young, H. M. (2008). Disturbances of colonic motility in mouse models of Hirschsprung's disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294, G996-G1008.
Robinson, D. R., McNaughton, P. A., Evans, M. L., & Hicks, G. A. (2004). Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling. Neurogastroenterology and Motility, 16, 113-124.
Russell, F. A., King, R., Smillie, S. J., Kodji, X., & Brain, S. D. (2014). Calcitonin gene-related peptide: Physiology and pathophysiology. Physiological Reviews, 94, 1099-1142.
Russo, D., Bombardi, C., Grandis, A., Furness, J. B., Spadari, A., Bernardini, C., & Chiocchetti, R. (2010). Sympathetic innervation of the ileocecal junction in horses. Journal of Comparative Neurology, 518, 4046-4066.
Sang, Q., & Young, H. (1998). The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Research, 809, 253-268.
Schütz, B., Mauer, D., Salmon, A. M., Changeux, J. P., & Zimmer, A. (2004). Analysis of the cellular expression pattern of beta-CGRP in alpha-CGRP-deficient mice. Journal of Comparative Neurology, 476, 32-43.
Sharrad, D. F., Gai, W.-P., & Brookes, S. J. H. (2013). Selective co-expression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea-pig ileum. The Journal of Comparative Neurology, 521, 2523-2537.
Sharrad, D. F., Hibberd, T. J., Kyloh, M. A., Brookes, S. J. H., & Spencer, N. J. (2015). Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum. Neuroscience Letters, 599, 164-171.
Sibaev, A., Franck, H., Vanderwinden, J.-M., Allescher, H.-D., & Storr, M. (2003). Structural differences in the enteric neural network in murine colon: Impact on electrophysiology. American Journal of Physiology, 285, G1325-G1334.
Sibaev, A., Yüce, B., Kemmer, M., Van Nassauw, L., Broedl, U., Allescher, H. D., Göke, B., Timmermans, J.-P., & Storr, M. (2009). Cannabinoid-1 (CB1) receptors regulate colonic propulsion by acting at motor neurons within the ascending motor pathways in mouse colon. American Journal of Physiology - Gastrointestinal and Liver Physiology, 296, G119-G128.
Sipe, W. E. B., Brierley, S. M., Martin, C. M., Phillis, B. D., Cruz, F. B., Grady, E. F., Liedtke, W., Cohen, D. M., Vanner, S., Blackshaw, L. A., & Bunnett, N. W. (2008). Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294, G1288-G1298.
Song, Z. M., Brookes, S. J. H., & Costa, M. (1994). All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neuroscience Letters, 180, 219-222.
Spencer, N. J., Sorensen, J., Travis, L., Wiklendt, L., Costa, M., & Hibberd, T. J. (2016). Imaging activation of peptidergic spinal afferent varicosities within visceral organs using novel CGRPα-mCherry reporter mice. American Journal of Physiology - Gastrointestinal & Liver Physiology, 311, G880-G894.
Spencer, N. J., Hibberd, T. J., Travis, L., Wiklendt, L., Costa, M., Hu, H., Brookes, S. J., Wattchow, D. A., Dinning, P. G., Keating, D. J., & Sorensen, J. (2018). Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle. The Journal of Neuroscience, 38, 5507-5522.
Spencer, N. J., Travis, L., Wiklendt, L., Hibberd, T. J., Costa, M., Dinning, P., & Hu, H. (2020). Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. American Journal of Physiology - Gastrointestinal & Liver Physiology, 318, G244-G253.
Sternini, C., & Anderson, K. (1992). Calcitonin gene-related peptide-containing neurons supplying the rat digestive system: Differential distribution and expression pattern. Somatosensory and Motor Research, 9, 45-59.
Tamura, K., Ito, H., & Wade, P. R. (2001). Morphology, electrophysiology, and calbindin immunoreactivity of myenteric neurons in the guinea pig distal colon. The Journal of Comparative Neurology, 437, 423-437.
Tan, L., Bornstein, J., & Anderson, C. (2008). Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience, 156, 334-343.
Tarif, A. M. M., Islam, M. N., Jahan, M. R., Yanai, A., Nozaki, K., Masumoto, K. H., & Shinoda, K. (2021). Immunohistochemical expression and neurochemical phenotypes of huntingtin-associated protein 1 in the myenteric plexus of mouse gastrointestinal tract. Cell & Tissue Research, 386, 533-558.
Thomas, E., Bertrand, P., & Bornstein, J. (1999). Genesis and role of coordinated firing in a feedforward network: A model study of the enteric nervous system. Neuroscience, 93, 1525-1537.
Thomas, E. A., Bertrand, P. P., & Bornstein, J. C. (2000). A computer simulation of recurrent, excitatory networks of sensory neurons of the gut in guinea-pig. Neuroscience Letters, 287, 137-140.
Thompson, B. J., Washington, M. K., Kurre, U., Singh, M., Rula, E. Y., & Emeson, R. B. (2008). Protective roles of alpha-calcitonin and beta-calcitonin gene-related peptide in spontaneous and experimentally induced colitis. Digestive Diseases and Sciences, 53, 229-241.
Touré, A. M., Charrier, B., & Pilon, N. (2016). Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterology & Motility, 28, 1494-1507.
Wattchow, D., Brookes, S., Murphy, E., Carbone, S., De Fontgalland, D., & Costa, M. (2008). Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation. Neurogastroenterology & Motility, 20, 1298-1305.
Wong, V., Blennerhassett, M., & Vanner, S. (2008). Electrophysiological and morphological properties of submucosal neurons in the mouse distal colon. Neurogastroenterology & Motility, 20, 725-734.
Xiao, J., Nguyen, T. V., Ngui, K., Strijbos, P., Selmer, I. S., Neylon, C. B., & Furness, J. B. (2004). Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system. Neuroscience, 129, 603-614.
Zhang, Y., Bitner, D., Pontes Filho, A. A., Li, F., Liu, S., Wang, H., Yang, F., Adhikari, S., Gordon, J., Srinivasan, S., & Hu, W. (2014). Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterology and Motility, 26, 77-97.
Zhong, F., Christianson, J. A., Davis, B. M., & Bielefeldt, K. (2008). Dichotomizing axons in spinal and vagal afferents of the mouse stomach. Digestive Diseases and Sciences, 53, 194-203.
Zimmermann, K., Lennerz, J. K., Hein, A., Link, A. S., Kaczmarek, J. S., Delling, M., Uysal, S., Pfeifer, J. D., Riccio, A., & Clapham, D. E. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 108, 18114-18119.

Auteurs

Timothy J Hibberd (TJ)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Wai Ping Yew (WP)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Kelsi N Dodds (KN)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Zili Xie (Z)

Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA.

Lee Travis (L)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Simon J Brookes (SJ)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Marcello Costa (M)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Hongzhen Hu (H)

Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA.

Nick J Spencer (NJ)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH