The role of cardiac magnetic resonance in identifying appropriate candidates for cardiac resynchronization therapy - a systematic review of the literature.


Journal

Heart failure reviews
ISSN: 1573-7322
Titre abrégé: Heart Fail Rev
Pays: United States
ID NLM: 9612481

Informations de publication

Date de publication:
11 2022
Historique:
accepted: 23 02 2022
pubmed: 1 9 2022
medline: 12 10 2022
entrez: 31 8 2022
Statut: ppublish

Résumé

Despite the strict indications for cardiac resynchronization therapy (CRT) implantation, a significant proportion of patients will fail to adequately respond to the treatment. This systematic review aims to present the existing evidence about the role of cardiac magnetic resonance (CMR) in identifying patients who are likely to respond better to the CRT. A systematic search in the MedLine database and Cochrane Library from their inception to August 2021 was performed, without any limitations, by two independent investigators. We considered eligible observational studies or randomized clinical trials (RCTs) that enrolled patients > 18 years old with heart failure (HF) of ischaemic or non-ischaemic aetiology and provided data about the association of baseline CMR variables with clinical or echocardiographic response to CRT for at least 3 months. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA Statement). Following our search strategy, 47 studies were finally included in our review. CMR appears to have an additive role in identifying the subgroup of patients who will respond better to CRT. Specifically, the presence and the extent of myocardial scar were associated with increased non-response rates, while those with no scar respond better. Furthermore, existing data show that scar location can be associated with CRT response rates. CMR-derived markers of mechanical desynchrony can also be used as predictors of CRT response. CMR data can be used to optimize the position of the left ventricular lead during the CRT implantation procedure. Specifically, positioning the left ventricular lead in a branch of the coronary sinus that feeds an area with transmural scar was associated with poorer response to CRT. CMR can be used as a non-invasive optimization tool to identify patients who are more likely to achieve better clinical and echocardiographic response following CRT implantation.

Identifiants

pubmed: 36045189
doi: 10.1007/s10741-022-10263-5
pii: 10.1007/s10741-022-10263-5
doi:

Types de publication

Journal Article Review Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2095-2118

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):1810–1852. https://doi.org/10.1161/CIR.0b013e31829e8807
doi: 10.1161/CIR.0b013e31829e8807 pubmed: 23741057
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, Group ESCSD (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab368
doi: 10.1093/eurheartj/ehab368
Bonakdar HR, Jorat MV, Fazelifar AF, Alizadeh A, Givtaj N, Sameie N, Sadeghpour A, Haghjoo M (2009) Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 11(10):1330–1337. https://doi.org/10.1093/europace/eup258
doi: 10.1093/europace/eup258
Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD, Fyfe DA, Leon AR, Oshinski JN (2010) Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation 121(18):1985–1991. https://doi.org/10.1161/CIRCULATIONAHA.109.910778
doi: 10.1161/CIRCULATIONAHA.109.910778 pubmed: 20421518 pmcid: 2882855
von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2016) Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. J Cardiovasc Magn Reson 18:6. https://doi.org/10.1186/s12968-016-0225-6
doi: 10.1186/s12968-016-0225-6
Yoneyama K, Kitanaka Y, Tanaka O, Akashi YJ (2018) Cardiovascular magnetic resonance imaging in heart failure. Expert Rev Cardiovasc Ther 16(4):237–248. https://doi.org/10.1080/14779072.2018.1445525
doi: 10.1080/14779072.2018.1445525 pubmed: 29478345
Vassiliou VS, Pavlou M, Malley T, Halliday BP, Tsampasian V, Raphael CE, Tse G, Vieira MS, Auger D, Everett R, Chin C, Alpendurada F, Pepper J, Pennell DJ, Newby DE, Jabbour A, Dweck MR, Prasad SK (2021) A novel cardiovascular magnetic resonance risk score for predicting mortality following surgical aortic valve replacement. Sci Rep 11(1):20183. https://doi.org/10.1038/s41598-021-99788-7
doi: 10.1038/s41598-021-99788-7 pubmed: 34642428 pmcid: 8511276
Vassiliou VS, Perperoglou A, Raphael CE, Joshi S, Malley T, Everett R, Halliday B, Pennell DJ, Dweck MR, Prasad SK (2017) Midwall fibrosis and 5-year outcome in moderate and severe aortic stenosis. J Am Coll Cardiol 69(13):1755–1756. https://doi.org/10.1016/j.jacc.2017.01.034
doi: 10.1016/j.jacc.2017.01.034 pubmed: 28359524
Halliday BP, Baksi AJ, Gulati A, Ali A, Newsome S, Izgi C, Arzanauskaite M, Lota A, Tayal U, Vassiliou VS, Gregson J, Alpendurada F, Frenneaux MP, Cook SA, Cleland JGF, Pennell DJ, Prasad SK (2019) Outcome in dilated cardiomyopathy related to the extent, location, and pattern of late gadolinium enhancement. JACC Cardiovasc Imaging 12(8 Pt 2):1645–1655. https://doi.org/10.1016/j.jcmg.2018.07.015
doi: 10.1016/j.jcmg.2018.07.015 pubmed: 30219397 pmcid: 6682609
Sidhu BS, Gould J, Elliott MK, Mehta VS, Niederer SA, Carr-White G, Rinaldi CA (2021) Clinical effectiveness of a dedicated cardiac resynchronization therapy pre-assessment clinic incorporating cardiac magnetic resonance imaging and cardiopulmonary exercise testing on patient selection and outcomes. Int J Cardiol Heart Vasc 34:100800. https://doi.org/10.1016/j.ijcha.2021.100800
doi: 10.1016/j.ijcha.2021.100800 pubmed: 34159251 pmcid: 8203725
Neilan TG, Coelho-Filho OR, Danik SB, Shah RV, Dodson JA, Verdini DJ, Tokuda M, Daly CA, Tedrow UB, Stevenson WG, Jerosch-Herold M, Ghoshhajra BB, Kwong RY (2013) CMR quantification of myocardial scar provides additive prognostic information in nonischemic cardiomyopathy. JACC Cardiovasc Imaging 6(9):944–954. https://doi.org/10.1016/j.jcmg.2013.05.013
doi: 10.1016/j.jcmg.2013.05.013 pubmed: 23932642 pmcid: 3952043
Vassiliou VS, Wassilew K, Cameron D, Heng EL, Nyktari E, Asimakopoulos G, de Souza A, Giri S, Pierce I, Jabbour A, Firmin D, Frenneaux M, Gatehouse P, Pennell DJ, Prasad SK (2018) Identification of myocardial diffuse fibrosis by 11 heartbeat MOLLI T 1 mapping: averaging to improve precision and correlation with collagen volume fraction. MAGMA 31(1):101–113. https://doi.org/10.1007/s10334-017-0630-3
doi: 10.1007/s10334-017-0630-3 pubmed: 28608326
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
doi: 10.1371/journal.pmed.1000097
D’Andrea A, Caso P, Scarafile R, Riegler L, Salerno G, Castaldo F, Gravino R, Cocchia R, Del Viscovo L, Limongelli G, Di Salvo G, Ascione L, Iengo R, Cuomo S, Santangelo L, Calabro R (2009) Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail 11(1):58–67. https://doi.org/10.1093/eurjhf/hfn010
doi: 10.1093/eurjhf/hfn010 pubmed: 19147458
Cochet H, Denis A, Ploux S, Lumens J, Amraoui S, Derval N, Sacher F, Reant P, Lafitte S, Jais P, Laurent F, Ritter P, Montaudon M, Bordachar P (2013) Pre- and intra-procedural predictors of reverse remodeling after cardiac resynchronization therapy: an MRI study. J Cardiovasc Electrophysiol 24(6):682–691. https://doi.org/10.1111/jce.12101
doi: 10.1111/jce.12101 pubmed: 23437804
Gathier WA, Salden OAE, van Ginkel DJ, van Everdingen WM, Mohamed Hoesein FAA, Cramer MJM, Doevendans PA, Meine M, Chamuleau SAJ, van Slochteren FJ (2020) Feasibility and potential benefit of pre-procedural CMR imaging in patients with ischaemic cardiomyopathy undergoing cardiac resynchronisation therapy. Neth Heart J 28(2):89–95. https://doi.org/10.1007/s12471-019-01360-6
doi: 10.1007/s12471-019-01360-6 pubmed: 31953775 pmcid: 6977813
Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, van der Wall EE, Schalij MJ, Bax JJ (2006) Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113(7):969–976. https://doi.org/10.1161/CIRCULATIONAHA.105.543678
doi: 10.1161/CIRCULATIONAHA.105.543678 pubmed: 16476852
Chalil S, Stegemann B, Muhyaldeen SA, Khadjooi K, Foley PW, Smith RE, Leyva F (2007) Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin Electrophysiol 30(10):1201–1209. https://doi.org/10.1111/j.1540-8159.2007.00841.x
doi: 10.1111/j.1540-8159.2007.00841.x pubmed: 17897122
Chalil S, Foley PW, Muyhaldeen SA, Patel KC, Yousef ZR, Smith RE, Frenneaux MP, Leyva F (2007) Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace 9(11):1031–1037. https://doi.org/10.1093/europace/eum133
doi: 10.1093/europace/eum133 pubmed: 17933857
Yokokawa M, Tada H, Toyama T, Koyama K, Naito S, Oshima S, Taniguchi K (2009) Magnetic resonance imaging is superior to cardiac scintigraphy to identify nonresponders to cardiac resynchronization therapy. Pacing Clin Electrophysiol 32(Suppl 1):S57-62. https://doi.org/10.1111/j.1540-8159.2008.02227.x
doi: 10.1111/j.1540-8159.2008.02227.x pubmed: 19250113
Leyva F, Taylor RJ, Foley PW, Umar F, Mulligan LJ, Patel K, Stegemann B, Haddad T, Smith RE, Prasad SK (2012) Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol 60(17):1659–1667. https://doi.org/10.1016/j.jacc.2012.05.054
doi: 10.1016/j.jacc.2012.05.054 pubmed: 23021326
Chen Z, Sohal M, Sammut E, Child N, Jackson T, Claridge S, Cooklin M, O’Neill M, Wright M, Gill J, Chiribiri A, Schaeffter T, Carr-White G, Razavi R, Rinaldi CA (2016) Focal but not diffuse myocardial fibrosis burden quantification using cardiac magnetic resonance imaging predicts left ventricular reverse modeling following cardiac resynchronization therapy. J Cardiovasc Electrophysiol 27(2):203–209. https://doi.org/10.1111/jce.12855
doi: 10.1111/jce.12855 pubmed: 26463874
Storkas HS, Hansen TF, Tahri JB, Lauridsen TK, Olsen FJ, Borgquist R, Vinther M, Lindhardt TB, Bruun NE, Sogaard P, Risum N (2020) Left axis deviation in patients with left bundle branch block is a marker of myocardial disease associated with poor response to cardiac resynchronization therapy. J Electrocardiol 63:147–152. https://doi.org/10.1016/j.jelectrocard.2019.04.007
doi: 10.1016/j.jelectrocard.2019.04.007 pubmed: 31003852
Stankovic I, Aarones M, Smith HJ, Voros G, Kongsgaard E, Neskovic AN, Willems R, Aakhus S, Voigt JU (2014) Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J 35(1):48–55. https://doi.org/10.1093/eurheartj/eht294
doi: 10.1093/eurheartj/eht294 pubmed: 23918757
Aalen JM, Donal E, Larsen CK, Duchenne J, Lederlin M, Cvijic M, Hubert A, Voros G, Leclercq C, Bogaert J, Hopp E, Fjeld JG, Penicka M, Linde C, Aalen OO, Kongsgard E, Galli E, Voigt JU, Smiseth OA (2020) Imaging predictors of response to cardiac resynchronization therapy: left ventricular work asymmetry by echocardiography and septal viability by cardiac magnetic resonance. Eur Heart J 41(39):3813–3823. https://doi.org/10.1093/eurheartj/ehaa603
doi: 10.1093/eurheartj/ehaa603 pubmed: 32918449 pmcid: 7599033
Ahmed W, Samy W, Tayeh O, Behairy N, Abd El Fattah A (2016) Left ventricular scar impact on left ventricular synchronization parameters and outcomes of cardiac resynchronization therapy. Int J Cardiol 222:665–670. https://doi.org/10.1016/j.ijcard.2016.07.158
doi: 10.1016/j.ijcard.2016.07.158 pubmed: 27517660
Linhart M, Doltra A, Acosta J, Borras R, Jauregui B, Fernandez-Armenta J, Anguera I, Bisbal F, Marti-Almor J, Tolosana JM, Penela D, Soto-Iglesias D, Villuendas R, Perea RJ, Ortiz JT, Bosch X, Auricchio A, Mont L, Berruezo A (2020) Ventricular arrhythmia risk is associated with myocardial scar but not with response to cardiac resynchronization therapy. Europace 22(9):1391–1400. https://doi.org/10.1093/europace/euaa142
doi: 10.1093/europace/euaa142 pubmed: 32898254
Jansen AH, Bracke F, van Dantzig JM, Peels KH, Post JC, van den Bosch HC, van Gelder B, Meijer A, Korsten HH, de Vries J, van Hemel NM (2008) The influence of myocardial scar and dyssynchrony on reverse remodeling in cardiac resynchronization therapy. Eur J Echocardiogr 9(4):483–488. https://doi.org/10.1016/j.euje.2007.07.002
doi: 10.1016/j.euje.2007.07.002 pubmed: 17826355
Andre C, Piver E, Perault R, Bisson A, Pucheux J, Vermes E, Pierre B, Fauchier L, Babuty D, Clementy N (2018) Galectin-3 predicts response and outcomes after cardiac resynchronization therapy. J Transl Med 16(1):299. https://doi.org/10.1186/s12967-018-1675-4
doi: 10.1186/s12967-018-1675-4 pubmed: 30390680 pmcid: 6215623
Petryka J, Misko J, Przybylski A, Spiewak M, Malek LA, Werys K, Mazurkiewicz L, Gepner K, Croisille P, Demkow M, Ruzyllo W (2012) Magnetic resonance imaging assessment of intraventricular dyssynchrony and delayed enhancement as predictors of response to cardiac resynchronization therapy in patients with heart failure of ischaemic and non-ischaemic etiologies. Eur J Radiol 81(10):2639–2647. https://doi.org/10.1016/j.ejrad.2011.10.003
doi: 10.1016/j.ejrad.2011.10.003 pubmed: 22056486
White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, Klein G, Drangova M (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48(10):1953–1960. https://doi.org/10.1016/j.jacc.2006.07.046
doi: 10.1016/j.jacc.2006.07.046 pubmed: 17112984
Fernandez-Armenta J, Berruezo A, Mont L, Sitges M, Andreu D, Silva E, Ortiz-Perez JT, Tolosana JM, de Caralt TM, Perea RJ, Calvo N, Trucco E, Borras R, Matas M, Brugada J (2012) Use of myocardial scar characterization to predict ventricular arrhythmia in cardiac resynchronization therapy. Europace 14(11):1578–1586. https://doi.org/10.1093/europace/eus104
doi: 10.1093/europace/eus104 pubmed: 22562658
Harb SC, Toro S, Bullen JA, Obuchowski NA, Xu B, Trulock KM, Varma N, Rickard J, Grimm R, Griffin B, Flamm SD, Kwon DH (2019) Scar burden is an independent and incremental predictor of cardiac resynchronisation therapy response. Open Heart 6(2):e001067. https://doi.org/10.1136/openhrt-2019-001067
doi: 10.1136/openhrt-2019-001067 pubmed: 31354957 pmcid: 6615837
Nguyen UC, Claridge S, Vernooy K, Engels EB, Razavi R, Rinaldi CA, Chen Z, Prinzen FW (2018) Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. J Electrocardiol 51(3):457–463. https://doi.org/10.1016/j.jelectrocard.2018.01.009
doi: 10.1016/j.jelectrocard.2018.01.009 pubmed: 29454649
Shetty AK, Duckett SG, Ginks MR, Ma Y, Sohal M, Bostock J, Kapetanakis S, Singh JP, Rhode K, Wright M, O’Neill MD, Gill JS, Carr-White G, Razavi R, Rinaldi CA (2013) Cardiac magnetic resonance-derived anatomy, scar, and dyssynchrony fused with fluoroscopy to guide LV lead placement in cardiac resynchronization therapy: a comparison with acute haemodynamic measures and echocardiographic reverse remodelling. Eur Heart J Cardiovasc Imaging 14(7):692–699. https://doi.org/10.1093/ehjci/jes270
doi: 10.1093/ehjci/jes270 pubmed: 23175695
Kockova R, Sedlacek K, Wichterle D, Sikula V, Tintera J, Jansova H, Praveckova A, Langova R, Kryze L, El-Husseini W, Segetova M, Kautzner J (2018) Cardiac resynchronization therapy guided by cardiac magnetic resonance imaging: A prospective, single-centre randomized study (CMR-CRT). Int J Cardiol 270:325–330. https://doi.org/10.1016/j.ijcard.2018.06.009
doi: 10.1016/j.ijcard.2018.06.009 pubmed: 29908832
Leyva F, Foley PW, Chalil S, Ratib K, Smith RE, Prinzen F, Auricchio A (2011) Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:29. https://doi.org/10.1186/1532-429X-13-29
doi: 10.1186/1532-429X-13-29 pubmed: 21668964 pmcid: 3141552
Marsan NA, Westenberg JJ, Ypenburg C, van Bommel RJ, Roes S, Delgado V, Tops LF, van der Geest RJ, Boersma E, de Roos A, Schalij MJ, Bax JJ (2009) Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 30(19):2360–2367. https://doi.org/10.1093/eurheartj/ehp280
doi: 10.1093/eurheartj/ehp280 pubmed: 19578165
Duckett SG, Ginks M, Shetty A, Kirubakaran S, Bostock J, Kapetanakis S, Gill J, Carr-White G, Razavi R, Rinaldi CA (2012) Adverse response to cardiac resynchronisation therapy in patients with septal scar on cardiac MRI preventing a septal right ventricular lead position. J Interv Card Electrophysiol 33(2):151–160. https://doi.org/10.1007/s10840-011-9630-9
doi: 10.1007/s10840-011-9630-9 pubmed: 22127378
Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, Nucifora G, van de Veire NR, Ypenburg C, Boersma E, Holman ER, Schalij MJ, Bax JJ (2011) Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 123(1):70–78. https://doi.org/10.1161/CIRCULATIONAHA.110.945345
doi: 10.1161/CIRCULATIONAHA.110.945345 pubmed: 21173353
Taylor RJ, Umar F, Panting JR, Stegemann B, Leyva F (2016) Left ventricular lead position, mechanical activation, and myocardial scar in relation to left ventricular reverse remodeling and clinical outcomes after cardiac resynchronization therapy: a feature-tracking and contrast-enhanced cardiovascular magnetic resonance study. Heart Rhythm 13(2):481–489. https://doi.org/10.1016/j.hrthm.2015.10.024
doi: 10.1016/j.hrthm.2015.10.024 pubmed: 26498258
Bertini M, Mele D, Malagu M, Fiorencis A, Toselli T, Casadei F, Cannizzaro T, Fragale C, Fucili A, Campagnolo E, Benea G, Ferrari R (2016) Cardiac resynchronization therapy guided by multimodality cardiac imaging. Eur J Heart Fail 18(11):1375–1382. https://doi.org/10.1002/ejhf.605
doi: 10.1002/ejhf.605 pubmed: 27406979
Taylor AJ, Elsik M, Broughton A, Cherayath J, Leet A, Wong C, Iles L, Butler M, Pfluger H (2010) Combined dyssynchrony and scar imaging with cardiac magnetic resonance imaging predicts clinical response and long-term prognosis following cardiac resynchronization therapy. Europace 12(5):708–713. https://doi.org/10.1093/europace/euq047
doi: 10.1093/europace/euq047 pubmed: 20190262
Sohal M, Shetty A, Duckett S, Chen Z, Sammut E, Amraoui S, Carr-White G, Razavi R, Rinaldi CA (2013) Noninvasive assessment of LV contraction patterns using CMR to identify responders to CRT. JACC Cardiovasc Imaging 6(8):864–873. https://doi.org/10.1016/j.jcmg.2012.11.019
doi: 10.1016/j.jcmg.2012.11.019 pubmed: 23735442
Zweerink A, van Everdingen WM, Nijveldt R, Salden OAE, Meine M, Maass AH, Vernooy K, de Lange FJ, Vos MA, Croisille P, Clarysse P, Geelhoed B, Rienstra M, van Gelder IC, van Rossum AC, Cramer MJ, Allaart CP (2018) Strain imaging to predict response to cardiac resynchronization therapy: a systematic comparison of strain parameters using multiple imaging techniques. ESC Heart Fail 5(6):1130–1140. https://doi.org/10.1002/ehf2.12335
doi: 10.1002/ehf2.12335 pubmed: 30051598 pmcid: 6300826
Bilchick KC, Dimaano V, Wu KC, Helm RH, Weiss RG, Lima JA, Berger RD, Tomaselli GF, Bluemke DA, Halperin HR, Abraham T, Kass DA, Lardo AC (2008) Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging 1(5):561–568. https://doi.org/10.1016/j.jcmg.2008.04.013
doi: 10.1016/j.jcmg.2008.04.013 pubmed: 19356481 pmcid: 2678755
Bilchick KC, Kuruvilla S, Hamirani YS, Ramachandran R, Clarke SA, Parker KM, Stukenborg GJ, Mason P, Ferguson JD, Moorman JR, Malhotra R, Mangrum JM, Darby AE, Dimarco J, Holmes JW, Salerno M, Kramer CM, Epstein FH (2014) Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. J Am Coll Cardiol 63(16):1657–1666. https://doi.org/10.1016/j.jacc.2014.02.533
doi: 10.1016/j.jacc.2014.02.533 pubmed: 24583155 pmcid: 4427624
Bilchick KC, Auger DA, Abdishektaei M, Mathew R, Sohn MW, Cai X, Sun C, Narayan A, Malhotra R, Darby A, Mangrum JM, Mehta N, Ferguson J, Mazimba S, Mason PK, Kramer CM, Levy WC, Epstein FH (2020) CMR DENSE and the Seattle Heart Failure Model inform survival and arrhythmia risk after CRT. JACC Cardiovasc Imaging 13(4):924–936. https://doi.org/10.1016/j.jcmg.2019.10.017
doi: 10.1016/j.jcmg.2019.10.017 pubmed: 31864974
Sohal M, Amraoui S, Chen Z, Sammut E, Jackson T, Wright M, O’Neill M, Gill J, Carr-White G, Rinaldi CA, Razavi R (2014) Combined identification of septal flash and absence of myocardial scar by cardiac magnetic resonance imaging improves prediction of response to cardiac resynchronization therapy. J Interv Card Electrophysiol 40(2):179–190. https://doi.org/10.1007/s10840-014-9907-x
doi: 10.1007/s10840-014-9907-x pubmed: 24916203
Kawakubo M, Nagao M, Kumazawa S, Chishaki AS, Mukai Y, Nakamura Y, Honda H, Morishita J (2013) Evaluation of cardiac dyssynchrony with longitudinal strain analysis in 4-chamber cine MR imaging. Eur J Radiol 82(12):2212–2216. https://doi.org/10.1016/j.ejrad.2013.06.014
doi: 10.1016/j.ejrad.2013.06.014 pubmed: 23910044
Kirn B, Jansen A, Bracke F, van Gelder B, Arts T, Prinzen FW (2008) Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. Am J Physiol Heart Circ Physiol 295(2):H640-646. https://doi.org/10.1152/ajpheart.00106.2008
doi: 10.1152/ajpheart.00106.2008 pubmed: 18515652
Warriner DR, Jackson T, Zacur E, Sammut E, Sheridan P, Hose DR, Lawford P, Razavi R, Niederer SA, Rinaldi CA, Lamata P (2018) An asymmetric wall-thickening pattern predicts response to cardiac resynchronization therapy. JACC Cardiovasc Imaging 11(10):1545–1546. https://doi.org/10.1016/j.jcmg.2018.01.022
doi: 10.1016/j.jcmg.2018.01.022 pubmed: 29550311 pmcid: 6288240
Auger DA, Bilchick KC, Gonzalez JA, Cui SX, Holmes JW, Kramer CM, Salerno M, Epstein FH (2017) Imaging left-ventricular mechanical activation in heart failure patients using cine DENSE MRI: validation and implications for cardiac resynchronization therapy. J Magn Reson Imaging 46(3):887–896. https://doi.org/10.1002/jmri.25613
doi: 10.1002/jmri.25613 pubmed: 28067978 pmcid: 5502204
Aimo A, Valleggi A, Barison A, Salerni S, Emdin M, Aquaro GD (2021) Morphologies and prognostic significance of left ventricular volume/time curves with cardiac magnetic resonance in patients with non-ischaemic heart failure and left bundle branch block. Int J Cardiovasc Imaging 37(7):2245–2255. https://doi.org/10.1007/s10554-021-02194-3
doi: 10.1007/s10554-021-02194-3 pubmed: 33635416 pmcid: 8286944
Nakao R, Nagao M, Fukushima K, Sakai A, Watanabe E, Kawakubo M, Sakai S, Hagiwara N (2019) Prediction of cardiac resynchronization therapy response in dilated cardiomyopathy using vortex flow mapping on cine magnetic resonance imaging. Circ Rep 1(8):333–341. https://doi.org/10.1253/circrep.CR-18-0024
doi: 10.1253/circrep.CR-18-0024 pubmed: 33693159 pmcid: 7892483
Zweerink A, Nijveldt R, Braams NJ, Maass AH, Vernooy K, de Lange FJ, Meine M, Geelhoed B, Rienstra M, van Gelder IC, Vos MA, van Rossum AC, Allaart CP (2021) Segment length in cine (SLICE) strain analysis: a practical approach to estimate potential benefit from cardiac resynchronization therapy. J Cardiovasc Magn Reson 23(1):4. https://doi.org/10.1186/s12968-020-00701-4
doi: 10.1186/s12968-020-00701-4 pubmed: 33423681 pmcid: 7798189
Jackson T, Sohal M, Chen Z, Child N, Sammut E, Behar J, Claridge S, Carr-White G, Razavi R, Rinaldi CA (2014) A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm 11(10):1790–1797. https://doi.org/10.1016/j.hrthm.2014.06.005
doi: 10.1016/j.hrthm.2014.06.005 pubmed: 24912138
Hartlage GR, Suever JD, Clement-Guinaudeau S, Strickland PT, Ghasemzadeh N, Magrath RP, Parikh A, Lerakis S, Hoskins MH, Leon AR, Lloyd MS, Oshinski JN (2015) Prediction of response to cardiac resynchronization therapy using left ventricular pacing lead position and cardiovascular magnetic resonance derived wall motion patterns: a prospective cohort study. J Cardiovasc Magn Reson 17(1):57. https://doi.org/10.1186/s12968-015-0158-5
doi: 10.1186/s12968-015-0158-5 pubmed: 26170046 pmcid: 4501253
Manca P, Cossa S, Matta G, Scalone A, Tola G, Schintu B, Setzu A, Melis M, Giardina A, Corda M, Sinagra G, Porcu M (2020) Right ventricular function assessed by cardiac magnetic resonance predicts the response to resynchronization therapy. J Cardiovasc Med (Hagerstown) 21(4):299–304. https://doi.org/10.2459/JCM.0000000000000931
doi: 10.2459/JCM.0000000000000931
Alpendurada F, Guha K, Sharma R, Ismail TF, Clifford A, Banya W, Mohiaddin RH, Pennell DJ, Cowie MR, McDonagh T, Prasad SK (2011) Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy. J Cardiovasc Magn Reson 13:68. https://doi.org/10.1186/1532-429X-13-68
doi: 10.1186/1532-429X-13-68 pubmed: 22040270 pmcid: 3217913
Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabes JA, Boriani G, Braunschweig F, Brignole M, Burri H, Coats AJS, Deharo JC, Delgado V, Diller GP, Israel CW, Keren A, Knops RE, Kotecha D, Leclercq C, Merkely B, Starck C, Thylen I, Tolosana JM, Group ESCSD (2021) 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J 42(35):3427–3520. https://doi.org/10.1093/eurheartj/ehab364
doi: 10.1093/eurheartj/ehab364
Catanzaro JN, Makaryus JN, Jadonath R, Makaryus AN (2014) Planning and guidance of cardiac resynchronization therapy-lead implantation by evaluating coronary venous anatomy assessed with multidetector computed tomography. Clin Med Insights Cardiol 8(Suppl 4):43–50. https://doi.org/10.4137/CMC.S18762
doi: 10.4137/CMC.S18762 pubmed: 25995655
Okafor O, Umar F, Zegard A, van Dam P, Walton J, Stegemann B, Marshall H, Leyva F (2020) Effect of QRS area reduction and myocardial scar on the hemodynamic response to cardiac resynchronization therapy. Heart Rhythm 17(12):2046–2055. https://doi.org/10.1016/j.hrthm.2020.07.025
doi: 10.1016/j.hrthm.2020.07.025 pubmed: 32717314
Zweerink A, de Roest GJ, Wu L, Nijveldt R, de Cock CC, van Rossum AC, Allaart CP (2016) Prediction of acute response to cardiac resynchronization therapy by means of the misbalance in regional left ventricular myocardial work. J Card Fail 22(2):133–142. https://doi.org/10.1016/j.cardfail.2015.10.020
doi: 10.1016/j.cardfail.2015.10.020 pubmed: 26564618
Behar JM, Jackson T, Hyde E, Claridge S, Gill J, Bostock J, Sohal M, Porter B, O’Neill M, Razavi R, Niederer S, Rinaldi CA (2016) Optimized left ventricular endocardial stimulation is superior to optimized epicardial stimulation in ischemic patients with poor response to cardiac resynchronization therapy: a combined magnetic resonance imaging, electroanatomic contact mapping, and hemodynamic study to target endocardial lead placement. JACC Clin Electrophysiol 2(7):799–809. https://doi.org/10.1016/j.jacep.2016.04.006
doi: 10.1016/j.jacep.2016.04.006 pubmed: 28066827 pmcid: 5196018
Chalil S, Stegemann B, Muhyaldeen S, Khadjooi K, Smith RE, Jordan PJ, Leyva F (2007) Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol 50(3):243–252. https://doi.org/10.1016/j.jacc.2007.03.035
doi: 10.1016/j.jacc.2007.03.035 pubmed: 17631217
Leyva F, Foley PW, Stegemann B, Ward JA, Ng LL, Frenneaux MP, Regoli F, Smith RE, Auricchio A (2009) Development and validation of a clinical index to predict survival after cardiac resynchronisation therapy. Heart 95(19):1619–1625. https://doi.org/10.1136/hrt.2009.173880
doi: 10.1136/hrt.2009.173880 pubmed: 19592389
Salden OAE, van den Broek HT, van Everdingen WM, Mohamed Hoesein FAA, Velthuis BK, Doevendans PA, Cramer MJ, Tuinenburg AE, Leufkens P, van Slochteren FJ, Meine M (2019) Multimodality imaging for real-time image-guided left ventricular lead placement during cardiac resynchronization therapy implantations. Int J Cardiovasc Imaging 35(7):1327–1337. https://doi.org/10.1007/s10554-019-01574-0
doi: 10.1007/s10554-019-01574-0 pubmed: 30847659 pmcid: 6598949
Sommer A, Kronborg MB, Nørgaard BL, Poulsen SH, Bouchelouche K, Böttcher M, Jensen HK, Jensen JM, Kristensen J, Gerdes C, Mortensen PT, Nielsen JC (2016) Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Eur J Heart Fail 18(11):1365–1374. https://doi.org/10.1002/ejhf.530
doi: 10.1002/ejhf.530 pubmed: 27087019
Borgquist R, Carlsson M, Markstad H, Werther-Evaldsson A, Ostenfeld E, Roijer A, Bakos Z (2020) Cardiac resynchronization therapy guided by echocardiography, MRI, and CT imaging. JACC: Clinical Electrophysiology 6 (10):1300–1309. https://doi.org/10.1016/j.jacep.2020.05.011
Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD, Fyfe DA, León AR, Oshinski JN (2010) Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation 121(18):1985–1991. https://doi.org/10.1161/CIRCULATIONAHA.109.910778
Gao X, Abdi M, Auger DA, Sun C, Hanson CA, Robinson AA, Schumann C, Oomen PJ, Ratcliffe S, Malhotra R, Darby A, Monfredi OJ, Mangrum JM, Mason P, Mazimba S, Holmes JW, Kramer CM, Epstein FH, Salerno M, Bilchick KC (2021) Cardiac magnetic resonance assessment of response to cardiac resynchronization therapy and programming strategies. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2021.06.015
doi: 10.1016/j.jcmg.2021.06.015 pubmed: 34922865
Aalen JM, Donal E, Larsen CK et al (2020) Imaging predictors of response to cardiac resynchronization therapy: left ventricular work asymmetry by echocardiography and septal viability by cardiac magnetic resonance. Eur Heart J 41(39):3813–3823. https://doi.org/10.1093/eurheartj/ehaa603[publishedOnlineFirst:2020/09/13]
doi: 10.1093/eurheartj/ehaa603[publishedOnlineFirst:2020/09/13] pubmed: 32918449 pmcid: 7599033
Ahmed W, Samy W, Tayeh O et al (2016) Left ventricular scar impact on left ventricular synchronization parameters and outcomes of cardiac resynchronization therapy. Int J Cardiol 222:665–670. https://doi.org/10.1016/j.ijcard.2016.07.158[publishedOnlineFirst:2016/08/16]
doi: 10.1016/j.ijcard.2016.07.158[publishedOnlineFirst:2016/08/16] pubmed: 27517660
Aimo A, Valleggi A, Barison A et al (2021) Morphologies and prognostic significance of left ventricular volume/time curves with cardiac magnetic resonance in patients with non-ischaemic heart failure and left bundle branch block. Int J Cardiovasc Imaging 37(7):2245–2255. https://doi.org/10.1007/s10554-021-02194-3[publishedOnlineFirst:2021/02/27]
doi: 10.1007/s10554-021-02194-3[publishedOnlineFirst:2021/02/27] pubmed: 33635416 pmcid: 8286944
Alpendurada F, Guha K, Sharma R et al (2011) Right ventricular dysfunction is a predictor of non-response and clinical outcome following cardiac resynchronization therapy. J Cardiovasc Magn Reson 13:68. https://doi.org/10.1186/1532-429X-13-68[publishedOnlineFirst:2011/11/02]
doi: 10.1186/1532-429X-13-68[publishedOnlineFirst:2011/11/02] pubmed: 22040270 pmcid: 3217913
Andre C, Piver E, Perault R et al (2018) Galectin-3 predicts response and outcomes after cardiac resynchronization therapy. J Transl Med 16(1):299. https://doi.org/10.1186/s12967-018-1675-4[publishedOnlineFirst:2018/11/06]
doi: 10.1186/s12967-018-1675-4[publishedOnlineFirst:2018/11/06] pubmed: 30390680 pmcid: 6215623
Auger DA, Bilchick KC, Gonzalez JA et al (2017) Imaging left-ventricular mechanical activation in heart failure patients using cine DENSE MRI: Validation and implications for cardiac resynchronization therapy. J Magn Reson Imaging 46(3):887–896. https://doi.org/10.1002/jmri.25613[publishedOnlineFirst:2017/01/10]
doi: 10.1002/jmri.25613[publishedOnlineFirst:2017/01/10] pubmed: 28067978 pmcid: 5502204
Bertini M, Mele D, Malagu M et al (2016) Cardiac resynchronization therapy guided by multimodality cardiac imaging. Eur J Heart Fail 18(11):1375–1382. https://doi.org/10.1002/ejhf.605[publishedOnlineFirst:2016/11/05]
doi: 10.1002/ejhf.605[publishedOnlineFirst:2016/11/05] pubmed: 27406979
Bilchick KC, Dimaano V, Wu KC et al (2008) Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging 1(5):561–568. https://doi.org/10.1016/j.jcmg.2008.04.013[publishedOnlineFirst:2009/04/10]
doi: 10.1016/j.jcmg.2008.04.013[publishedOnlineFirst:2009/04/10] pubmed: 19356481 pmcid: 2678755
Bilchick KC, Kuruvilla S, Hamirani YS et al (2014) Impact of mechanical activation, scar, and electrical timing on cardiac resynchronization therapy response and clinical outcomes. J Am Coll Cardiol 63(16):1657–1666. https://doi.org/10.1016/j.jacc.2014.02.533[publishedOnlineFirst:2014/03/04]
doi: 10.1016/j.jacc.2014.02.533[publishedOnlineFirst:2014/03/04] pubmed: 24583155 pmcid: 4427624
Bilchick KC, Auger DA, Abdishektaei M et al (2020) CMR DENSE and the Seattle Heart Failure Model Inform Survival and Arrhythmia Risk After CRT. JACC Cardiovasc Imaging 13(4):924–936. https://doi.org/10.1016/j.jcmg.2019.10.017[publishedOnlineFirst:2019/12/23]
doi: 10.1016/j.jcmg.2019.10.017[publishedOnlineFirst:2019/12/23] pubmed: 31864974
Bleeker GB, Kaandorp TA, Lamb HJ et al (2006) Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113(7):969–976. https://doi.org/10.1161/CIRCULATIONAHA.105.543678[publishedOnlineFirst:2006/02/16]
doi: 10.1161/CIRCULATIONAHA.105.543678[publishedOnlineFirst:2006/02/16] pubmed: 16476852
Chalil S, Stegemann B, Muhyaldeen SA et al (2007) Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin Electrophysiol 30(10):1201–1209. https://doi.org/10.1111/j.1540-8159.2007.00841.x[publishedOnlineFirst:2007/09/28]
doi: 10.1111/j.1540-8159.2007.00841.x[publishedOnlineFirst:2007/09/28] pubmed: 17897122
Chalil S, Foley PW, Muyhaldeen SA et al (2007) Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace 9(11):1031–1037. https://doi.org/10.1093/europace/eum133[publishedOnlineFirst:2007/10/16]
doi: 10.1093/europace/eum133[publishedOnlineFirst:2007/10/16] pubmed: 17933857
Chen Z, Sohal M, Sammut E et al (2016) Focal but not diffuse myocardial fibrosis burden quantification using cardiac magnetic resonance imaging predicts left ventricular reverse modeling following cardiac resynchronization therapy. J Cardiovasc Electrophysiol 27(2):203–209. https://doi.org/10.1111/jce.12855[publishedOnlineFirst:2015/10/16]
doi: 10.1111/jce.12855[publishedOnlineFirst:2015/10/16] pubmed: 26463874
Cochet H, Denis A, Ploux S et al (2013) Pre- and intra-procedural predictors of reverse remodeling after cardiac resynchronization therapy: an MRI study. J Cardiovasc Electrophysiol 24(6):682–691. https://doi.org/10.1111/jce.12101[publishedOnlineFirst:2013/02/27]
doi: 10.1111/jce.12101[publishedOnlineFirst:2013/02/27] pubmed: 23437804
D’Andrea A, Caso P, Scarafile R et al (2009) Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail 11(1):58–67. https://doi.org/10.1093/eurjhf/hfn010[publishedOnlineFirst:2009/01/17]
doi: 10.1093/eurjhf/hfn010[publishedOnlineFirst:2009/01/17] pubmed: 19147458
Duckett SG, Ginks M, Shetty A et al (2012) Adverse response to cardiac resynchronisation therapy in patients with septal scar on cardiac MRI preventing a septal right ventricular lead position. J Interv Card Electrophysiol 33(2):151–160. https://doi.org/10.1007/s10840-011-9630-9[publishedOnlineFirst:2011/12/01]
doi: 10.1007/s10840-011-9630-9[publishedOnlineFirst:2011/12/01] pubmed: 22127378
Fernandez-Armenta J, Berruezo A, Mont L et al (2012) Use of myocardial scar characterization to predict ventricular arrhythmia in cardiac resynchronization therapy. Europace 14(11):1578–1586. https://doi.org/10.1093/europace/eus104[publishedOnlineFirst:2012/05/09]
doi: 10.1093/europace/eus104[publishedOnlineFirst:2012/05/09] pubmed: 22562658
Gathier WA, Salden OAE, van Ginkel DJ et al (2020) Feasibility and potential benefit of pre-procedural CMR imaging in patients with ischaemic cardiomyopathy undergoing cardiac resynchronisation therapy. Neth Heart J 28(2):89–95. https://doi.org/10.1007/s12471-019-01360-6[publishedOnlineFirst:2020/01/19]
doi: 10.1007/s12471-019-01360-6[publishedOnlineFirst:2020/01/19] pubmed: 31953775 pmcid: 6977813
Harb SC, Toro S, Bullen JA et al (2019) Scar burden is an independent and incremental predictor of cardiac resynchronisation therapy response. Open Heart 6(2):e001067. https://doi.org/10.1136/openhrt-2019-001067[publishedOnlineFirst:2019/07/30]
doi: 10.1136/openhrt-2019-001067[publishedOnlineFirst:2019/07/30] pubmed: 31354957 pmcid: 6615837
Hartlage GR, Suever JD, Clement-Guinaudeau S et al (2015) Prediction of response to cardiac resynchronization therapy using left ventricular pacing lead position and cardiovascular magnetic resonance derived wall motion patterns: a prospective cohort study. J Cardiovasc Magn Reson 17(1):57. https://doi.org/10.1186/s12968-015-0158-5
doi: 10.1186/s12968-015-0158-5 pubmed: 26170046 pmcid: 4501253
Jackson T, Sohal M, Chen Z et al (2014) A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm 11(10):1790–1797. https://doi.org/10.1016/j.hrthm.2014.06.005[publishedOnlineFirst:2014/06/10]
doi: 10.1016/j.hrthm.2014.06.005[publishedOnlineFirst:2014/06/10] pubmed: 24912138
Jansen AH, Bracke F, van Dantzig JM et al (2008) The influence of myocardial scar and dyssynchrony on reverse remodeling in cardiac resynchronization therapy. Eur J Echocardiogr 9(4):483–488. https://doi.org/10.1016/j.euje.2007.07.002[publishedOnlineFirst:2007/09/11]
doi: 10.1016/j.euje.2007.07.002[publishedOnlineFirst:2007/09/11] pubmed: 17826355
Kawakubo M, Nagao M, Kumazawa S et al (2013) Evaluation of cardiac dyssynchrony with longitudinal strain analysis in 4-chamber cine MR imaging. Eur J Radiol 82(12):2212–2216. https://doi.org/10.1016/j.ejrad.2013.06.014[publishedOnlineFirst:2013/08/06]
doi: 10.1016/j.ejrad.2013.06.014[publishedOnlineFirst:2013/08/06] pubmed: 23910044
Kirn B, Jansen A, Bracke F et al (2008) Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. Am J Physiol Heart Circ Physiol 295(2):H640–H646. https://doi.org/10.1152/ajpheart.00106.2008[publishedOnlineFirst:2008/06/03]
doi: 10.1152/ajpheart.00106.2008[publishedOnlineFirst:2008/06/03] pubmed: 18515652
Kockova R, Sedlacek K, Wichterle D et al (2018) Cardiac resynchronization therapy guided by cardiac magnetic resonance imaging: A prospective, single-centre randomized study (CMR-CRT). Int J Cardiol 270:325–330. https://doi.org/10.1016/j.ijcard.2018.06.009[publishedOnlineFirst:2018/06/18]
doi: 10.1016/j.ijcard.2018.06.009[publishedOnlineFirst:2018/06/18] pubmed: 29908832
Leyva F, Foley PW, Chalil S et al (2011) Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:29. https://doi.org/10.1186/1532-429X-13-29[publishedOnlineFirst:2011/06/15]
doi: 10.1186/1532-429X-13-29[publishedOnlineFirst:2011/06/15] pubmed: 21668964 pmcid: 3141552
Leyva F, Taylor RJ, Foley PW et al (2012) Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol 60(17):1659–1667. https://doi.org/10.1016/j.jacc.2012.05.054[publishedOnlineFirst:2012/10/02]
doi: 10.1016/j.jacc.2012.05.054[publishedOnlineFirst:2012/10/02] pubmed: 23021326
Manca P, Cossa S, Matta G et al (2020) Right ventricular function assessed by cardiac magnetic resonance predicts the response to resynchronization therapy. J Cardiovasc Med (Hagerstown) 21(4):299–304. https://doi.org/10.2459/JCM.0000000000000931[publishedOnlineFirst:2020/02/29]
doi: 10.2459/JCM.0000000000000931[publishedOnlineFirst:2020/02/29]
Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 30(19):2360–2367. https://doi.org/10.1093/eurheartj/ehp280[publishedOnlineFirst:2009/07/07]
doi: 10.1093/eurheartj/ehp280[publishedOnlineFirst:2009/07/07] pubmed: 19578165
Nakao R, Nagao M, Fukushima K et al (2019) Prediction of cardiac resynchronization therapy response in dilated cardiomyopathy using vortex flow mapping on cine magnetic resonance imaging. Circ Rep 1(8):333–341. https://doi.org/10.1253/circrep.CR-18-0024[publishedOnlineFirst:2019/06/26]
doi: 10.1253/circrep.CR-18-0024[publishedOnlineFirst:2019/06/26] pubmed: 33693159 pmcid: 7892483
Petryka J, Misko J, Przybylski A et al (2012) Magnetic resonance imaging assessment of intraventricular dyssynchrony and delayed enhancement as predictors of response to cardiac resynchronization therapy in patients with heart failure of ischaemic and non-ischaemic etiologies. Eur J Radiol 81(10):2639–2647. https://doi.org/10.1016/j.ejrad.2011.10.003[publishedOnlineFirst:2011/11/08]
doi: 10.1016/j.ejrad.2011.10.003[publishedOnlineFirst:2011/11/08] pubmed: 22056486
Shetty AK, Duckett SG, Ginks MR et al (2013) Cardiac magnetic resonance-derived anatomy, scar, and dyssynchrony fused with fluoroscopy to guide LV lead placement in cardiac resynchronization therapy: a comparison with acute haemodynamic measures and echocardiographic reverse remodelling. Eur Heart J Cardiovasc Imaging 14(7):692–699. https://doi.org/10.1093/ehjci/jes270[publishedOnlineFirst:2012/11/24]
doi: 10.1093/ehjci/jes270[publishedOnlineFirst:2012/11/24] pubmed: 23175695
Sidhu BS, Gould J, Elliott MK et al (2021) Clinical effectiveness of a dedicated cardiac resynchronization therapy pre-assessment clinic incorporating cardiac magnetic resonance imaging and cardiopulmonary exercise testing on patient selection and outcomes. Int J Cardiol Heart Vasc 34:100800. https://doi.org/10.1016/j.ijcha.2021.100800[publishedOnlineFirst:2021/06/24]
doi: 10.1016/j.ijcha.2021.100800[publishedOnlineFirst:2021/06/24] pubmed: 34159251 pmcid: 8203725
Sohal M, Shetty A, Duckett S et al (2013) Noninvasive assessment of LV contraction patterns using CMR to identify responders to CRT. JACC Cardiovasc Imaging 6(8):864–873. https://doi.org/10.1016/j.jcmg.2012.11.019[publishedOnlineFirst:2013/06/06]
doi: 10.1016/j.jcmg.2012.11.019[publishedOnlineFirst:2013/06/06] pubmed: 23735442
Sohal M, Amraoui S, Chen Z et al (2014) Combined identification of septal flash and absence of myocardial scar by cardiac magnetic resonance imaging improves prediction of response to cardiac resynchronization therapy. J Interv Card Electrophysiol 40(2):179–190. https://doi.org/10.1007/s10840-014-9907-x[publishedOnlineFirst:2014/06/12]
doi: 10.1007/s10840-014-9907-x[publishedOnlineFirst:2014/06/12] pubmed: 24916203
Stankovic I, Aarones M, Smith HJ et al (2014) Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J 35(1):48–55. https://doi.org/10.1093/eurheartj/eht294[publishedOnlineFirst:2013/08/07]
doi: 10.1093/eurheartj/eht294[publishedOnlineFirst:2013/08/07] pubmed: 23918757
Storkas HS, Hansen TF, Tahri JB et al (2020) Left axis deviation in patients with left bundle branch block is a marker of myocardial disease associated with poor response to cardiac resynchronization therapy. J Electrocardiol 63:147–152. https://doi.org/10.1016/j.jelectrocard.2019.04.007[publishedOnlineFirst:2019/04/21]
doi: 10.1016/j.jelectrocard.2019.04.007[publishedOnlineFirst:2019/04/21] pubmed: 31003852
Taylor AJ, Elsik M, Broughton A et al (2010) Combined dyssynchrony and scar imaging with cardiac magnetic resonance imaging predicts clinical response and long-term prognosis following cardiac resynchronization therapy. Europace 12(5):708–713. https://doi.org/10.1093/europace/euq047[publishedOnlineFirst:2010/03/02]
doi: 10.1093/europace/euq047[publishedOnlineFirst:2010/03/02] pubmed: 20190262
Taylor RJ, Umar F, Panting JR et al (2016) Left ventricular lead position, mechanical activation, and myocardial scar in relation to left ventricular reverse remodeling and clinical outcomes after cardiac resynchronization therapy: A feature-tracking and contrast-enhanced cardiovascular magnetic resonance study. Heart Rhythm 13(2):481–489. https://doi.org/10.1016/j.hrthm.2015.10.024[publishedOnlineFirst:2015/10/27]
doi: 10.1016/j.hrthm.2015.10.024[publishedOnlineFirst:2015/10/27] pubmed: 26498258
Nguyen UC, Claridge S, Vernooy K et al (2018) Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. J Electrocardiol 51(3):457–463. https://doi.org/10.1016/j.jelectrocard.2018.01.009[publishedOnlineFirst:2018/02/20]
doi: 10.1016/j.jelectrocard.2018.01.009[publishedOnlineFirst:2018/02/20] pubmed: 29454649
Warriner DR, Jackson T, Zacur E et al (2018) An asymmetric wall-thickening pattern predicts response to cardiac resynchronization therapy. JACC Cardiovasc Imaging 11(10):1545–1546. https://doi.org/10.1016/j.jcmg.2018.01.022[publishedOnlineFirst:2018/03/20]
doi: 10.1016/j.jcmg.2018.01.022[publishedOnlineFirst:2018/03/20] pubmed: 29550311 pmcid: 6288240
White JA, Yee R, Yuan X et al (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48(10):1953–1960. https://doi.org/10.1016/j.jacc.2006.07.046[publishedOnlineFirst:2006/11/23]
doi: 10.1016/j.jacc.2006.07.046[publishedOnlineFirst:2006/11/23] pubmed: 17112984
Yokokawa M, Tada H, Toyama T et al (2009) Magnetic resonance imaging is superior to cardiac scintigraphy to identify nonresponders to cardiac resynchronization therapy. Pacing Clin Electrophysiol 32(Suppl 1):S57-62. https://doi.org/10.1111/j.1540-8159.2008.02227.x[publishedOnlineFirst:2009/03/11]
doi: 10.1111/j.1540-8159.2008.02227.x[publishedOnlineFirst:2009/03/11] pubmed: 19250113
Zweerink A, van Everdingen WM, Nijveldt R et al (2018) Strain imaging to predict response to cardiac resynchronization therapy: a systematic comparison of strain parameters using multiple imaging techniques. ESC Heart Fail 5(6):1130–1140. https://doi.org/10.1002/ehf2.12335[publishedOnlineFirst:2018/07/28]
doi: 10.1002/ehf2.12335[publishedOnlineFirst:2018/07/28] pubmed: 30051598 pmcid: 6300826
Zweerink A, Nijveldt R, Braams NJ et al (2021) Segment length in cine (SLICE) strain analysis: a practical approach to estimate potential benefit from cardiac resynchronization therapy. J Cardiovasc Magn Reson 23(1):4. https://doi.org/10.1186/s12968-020-00701-4[publishedOnlineFirst:2021/01/12]
doi: 10.1186/s12968-020-00701-4[publishedOnlineFirst:2021/01/12] pubmed: 33423681 pmcid: 7798189
Linhart M, Doltra A, Acosta J et al (2020) Ventricular arrhythmia risk is associated with myocardial scar but not with response to cardiac resynchronization therapy. Europace 22(9):1391–1400. https://doi.org/10.1093/europace/euaa142[publishedOnlineFirst:2020/09/09]
doi: 10.1093/europace/euaa142[publishedOnlineFirst:2020/09/09] pubmed: 32898254

Auteurs

George Bazoukis (G)

Department of Cardiology, Larnaca General Hospital, Inomenon Polition Amerikis, Larnaca, Cyprus. gbazoykis@med.uoa.gr.
Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus. gbazoykis@med.uoa.gr.

Jeremy Man Ho Hui (JMH)

International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China.
Department of Medicine, The University of Hong Kong, Hong Kong, China.

Yan Hiu Athena Lee (YHA)

International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China.
Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.

Oscar Hou In Chou (OHI)

International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China.
Department of Medicine, The University of Hong Kong, Hong Kong, China.

Dimitrios Sfairopoulos (D)

Department of Cardiology, University of Ioannina, Ioannina, Greece.

Konstantinos Vlachos (K)

Electrophysiology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece.

Athanasios Saplaouras (A)

Electrophysiology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece.

Konstantinos P Letsas (KP)

Electrophysiology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece.

Michael Efremidis (M)

Electrophysiology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece.

Gary Tse (G)

Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
Kent and Medway Medical School, Kent, UK.

Vassilios S Vassiliou (VS)

Norwich Medical School, University of East Anglia and Norfolk and Norwich University Hospital, Norwich, NR4 7TJ, UK.

Panagiotis Korantzopoulos (P)

Department of Cardiology, University of Ioannina, Ioannina, Greece.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH