Calcium transients in intramuscular interstitial cells of Cajal of the murine gastric fundus and their regulation by neuroeffector transmission.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
10 2022
Historique:
received: 13 05 2022
accepted: 15 08 2022
pubmed: 5 9 2022
medline: 19 10 2022
entrez: 4 9 2022
Statut: ppublish

Résumé

Enteric neurotransmission is critical for coordinating motility throughout the gastrointestinal (GI) tract. However, there is considerable controversy regarding the cells that are responsible for the transduction of these neural inputs. In the present study, utilization of a cell-specific calcium biosensor GCaMP6f, the spontaneous activity and neuroeffector responses of intramuscular ICC (ICC-IM) to motor neural inputs was examined. Simultaneous intracellular microelectrode recordings and high-speed video-imaging during nerve stimulation was used to reveal the temporal relationship between changes in intracellular Ca

Identifiants

pubmed: 36057845
doi: 10.1113/JP282876
doi:

Substances chimiques

Atropine Derivatives 0
Calcium, Dietary 0
Muscarinic Antagonists 0
Nitric Oxide Synthase EC 1.14.13.39
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4439-4463

Informations de copyright

© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.

Références

Albertí, E., Mikkelsen, H. B., Wang, X. Y., Díaz, M., Larsen, J. O., Huizinga, J. D., & Jiménez, M. (2007). Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. American Journal of Physiology, 292, G1499-1510.
Baker, S. A., Drumm, B. T., Cobine, C. A., Keef, K. D., & Sanders, K. M. (2018). Inhibitory neural regulation of the Ca 2+ transients in intramuscular interstitial cells of cajal in the small intestine. Front Physiol, 9, 328.
Baker, S. A., Drumm, B. T., Saur, D., Hennig, G. W., Ward, S. M., & Sanders, K. M. (2016). Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. Journal of Physiology, 594(12), 3317-3338.
Baker, S. A., Hwang, S. J., Blair, P. J., Sireika, C., Wei, L., Ro, S., Ward, S. M., & Sanders, K. M. (2021). Ca2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell Calcium, 99, 102472.
Beckett, E. A., Bayguinov, Y. R., Sanders, K. M., Ward, S. M., & Hirst, G. D. (2004). Properties of unitary potentials generated by intramuscular interstitial cells of Cajal in the murine and guinea-pig gastric fundus. Journal of Physiology, 559(1), 259-269.
Beckett, E. A., Horiguchi, K., Khoyi, M., Sanders, K. M., & Ward, S. M. (2002). Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. Journal of Physiology, 543(3), 871-887.
Beckett, E. A., McGeough, C. A., Sanders, K. M., & Ward, S. M. (2003). Pacing of interstitial cells of Cajal in the murine gastric antrum: Neurally mediated and direct stimulation. Journal of Physiology, 553(2), 545-559.
Beckett, E. A., Sanders, K. M., & Ward, S. M. (2017). Inhibitory responses mediated by vagal nerve stimulation are diminished in stomachs of mice with reduced intramuscular interstitial cells of Cajal. Science Reports, 7(1), 44759.
Beckett, E. A., Takeda, Y., Yanase, H., Sanders, K. M., & Ward, S. M. (2005). Synaptic specializations exist between enteric motor nerves and interstitial cells of Cajal in the murine stomach. Journal of Comparative Neurology, 493(2), 193-206.
Bhetwal, B. P., Sanders, K. M., An, C., Trappanese, D. M., Moreland, R. S., & Perrino, B. A. (2013). Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. Journal of Physiology, 591(12), 2971-2986.
Bird, G. S., DeHaven, W. I., Smyth, J. T., & Putney, J. W. Jr (2008). Methods for studying store-operated calcium entry. Methods, 46(3), 204-212.
Blair, P. J., Bayguinov, Y., Sanders, K. M., & Ward, S. M. (2012). Interstitial cells in the primate gastrointestinal tract. Cell and Tissue Research, 350(2), 199-213.
Burns, A. J., Lomax, A. E., Torihashi, S., Sanders, K. M., & Ward, S. M. (1996). Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Pnas, 93(21), 12008-12013.
Desai, K. M., Sessa, W. C., & Vane, J. R. (1991). Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature, 351(6326), 477-479.
Drumm, B. T., Hannigan, K. I., Lee, J. Y., Rembetski, B. E., Baker, S. A., Koh, S. D., Cobine, C. A., & Sanders, K. M. (2022). Ca2+ signalling in interstitial cells of Cajal contributes to generation and maintenance of tone in mouse and monkey lower oesophageal sphincters. Journal of Physiology, 600(11), 2613-2636.
Drumm, B. T., Hennig, G. W., Baker, S. A., & Sanders, K. M. (2019). Applications of spatio-temporal mapping and particle analysis techniques to quantify intracellular Ca2+ signaling in situ. Journal of visualized experiments: JoVE, 143(143), https://doi.org/10.3791/58989.
Drumm, B. T., Hennig, G. W., Battersby, M. J., Cunningham, E. K., Sung, T. S., Ward, S. M., Sanders, K. M., & Baker, S. A. (2017). Clustering of Ca2+transients in interstitial cells of Cajal defines slow wave duration. Journal of General Physiology, 149(7), 703-725.
Drumm, B. T., Hwang, S. J., Baker, S. A., Ward, S. M., & Sanders, K. M. (2019). Ca2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. Journal of Physiology, 597(14), 3587-3617.
Drumm, B. T., Rembetski, B. E., Baker, S. A., & Sanders, K. M. (2019). Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca2+ signaling in interstitial cells of Cajal. Science Reports, 9(1), 4402-4414.
Drumm, B. T., Rembetski, B. E., Messersmith, K., Manierka, M. S., Baker, S. A., & Sanders, K. M. (2020). Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. Journal of Physiology, 598(4), 651-681.
Drumm, B. T., Sung, T. S., Zheng, H., Baker, S. A., Koh, S. D., & Sanders, K. M. (2018). The effects of mitochondrial inhibitors on Ca2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium, 72, 1-17.
Edwards, F. R., Hirst, G. D., & Suzuki, H. (1999). Unitary nature of regenerative potentials recorded from circular smooth muscle of guinea-pig antrum. Journal of Physiology, 519(1), 235-250.
Gomez-Pinilla, P. J., Gibbons, S. J., Bardsley, M. R., Lorincz, A., Pozo, M. J., Pasricha, P. J., Van de Rijn, M., West, R. B., Sarr, M. G., Kendrick, M. L., Cima, R. R., Dozois, E. J., Larson, D. W., Ordog, T., & Farrugia, G. (2009). Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. American journal of physiology Gastrointestinal and liver physiology, 296(6), G1370-G1381.
Goyal, R. K., & Chaudhury, A. (2010). Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut. American journal of physiology Gastrointestinal and liver physiology, 298(1), G10-G13.
Grady, E. F., Baluk, P., Bohm, S., Gamp, P. D., Wong, H., Payan, D. G., Ansel, J., Portbury, A. L., Furness, J. B., McDonald, D. M., & Bunnett, N. W. (1996). Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. Journal of Neuroscience, 16(21), 6975-6986.
Groneberg, D., Lies, B., Konig, P., Jager, R., Seidler, B., Klein, S., Saur, D., & Friebe, A. (2013). Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology, 145(1), 188-196.
Groneberg, D., Voussen, B., & Friebe, A. (2016). Integrative control of gastrointestinal motility by nitric oxide. Current Medicinal Chemistry, 23(24), 2715-2735
Groneberg, D., Zizer, E., Lies, B., Seidler, B., Saur, D., Wagner, M., & Friebe, A. (2015). Dominant role of interstitial cells of Cajal in nitrergic relaxation of murine lower oesophageal sphincter. Journal of Physiology, 593(2), 403-414.
Grundy, D. (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Journal of Physiology , 593(12), 2547-2549.
Hirst, G. D., Beckett, E. A., Sanders, K. M., & Ward, S. M. (2002). Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum. Journal of Physiology, 540(3), 1003-1012.
Horiguchi, K., Sanders, K. M., & Ward, S. M. (2003). Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum. Cell and Tissue Research, 311(3), 299-313.
Huizinga, J. D., Liu, L. W., Fitzpatrick, A., White, E., Gill, S., Wang, X. Y., Zarate, N., Krebs, L., Choi, C., Starret, T., Dixit, D., & Ye, J. (2008). Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. American journal of physiology Gastrointestinal and liver physiology, 294(2), G589-G594.
Hwang, S. J., Blair, P. J., Britton, F. C., O'Driscoll, K. E., Hennig, G., Bayguinov, Y. R., Rock, J. R., Harfe, B. D., Sanders, K. M., & Ward, S. M. (2009). Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. Journal of Physiology, 587(20), 4887-4904.
Iino, S., Horiguchi, K., & Nojyo, Y. (2008). Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience, 152(2), 437-448.
Iino, S., Horiguchi, K., Nojyo, Y., Ward, S. M., & Sanders, K. M. (2009). Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterology and Motility, 21(5), 542-e13.
Iino, S., Ward, S. M., & Sanders, K. M. (2004). Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. Journal of Physiology, 556(2), 521-530.
Inoue, R. (1991). Effect of external Cd2+ and other divalent cations on carbachol-activated non-selective cation channels in guinea-pig ileum. Journal of Physiology, 442(1), 447-463.
Inoue, R., & Isenberg, G. (1990). Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. American Journal of Physiology, 258(6), C1173-C1178.
Ivanova, A., Signore, M., Caro, N., Greene, N. D., Copp, A. J., & Martinez-Barbera, J. P. (2005). In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis (New York, N.Y.: 2000), 43(3), 129-135.
Klein, S., Seidler, B., Kettenberger, A., Sibaev, A., Rohn, M., Feil, R., Allescher, H. D., Vanderwinden, J. M., Hofmann, F., Schemann, M., Rad, R., Storr, M. A., Schmid, R. M., Schneider, G., & Saur, D. (2013). Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nature Communication , 4(1), 1630-1638.
Kurahashi, M., Mutafova-Yambolieva, V., Koh, S. D., & Sanders, K. M. (2014). Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. American Journal of Physiology. Cell Physiology, 307(6), C561-C570.
Lavin, S. T., Southwell, B. R., Murphy, R., Jenkinson, K. M., & Furness, J. B. (1998). Activation of neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by substance P. Histochemistry and Cell Biology, 110(3), 263-271.
Lies, B., Beck, K., Keppler, J., Saur, D., Groneberg, D., & Friebe, A. (2015). Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon. Journal of Physiology, 593(20), 4589-4601.
Lies, B., Gil, V., Groneberg, D., Seidler, B., Saur, D., Wischmeyer, E., Jiménez, M., & Friebe, A. (2014). Interstitial cells of Cajal mediate nitrergic inhibitory neurotransmission in the murine gastrointestinal tract. American Journal of Physiology Gastrointestinal and Liver Physiology, 307(1), G98-G106.
Lies, B., Groneberg, D., & Friebe, A. (2014). Toward a better understanding of gastrointestinal nitrergic neuromuscular transmission. Neurogastroenterology and Motility , 26(7), 901-912.
Rhee, P. L., Lee, J. Y., Son, H. J., Kim, J. J., Rhee, J. C., Kim, S., Koh, S. D., Hwang, S. J., Sanders, K. M., & Ward, S. M. (2011). Analysis of pacemaker activity in the human stomach. Journal of Physiology , 589(24), 6105-6118.
Salmhofer, H., Neuhuber, W. L., Ruth, P., Huber, A., Russwurm, M., & Allescher, H. D. (2001). Pivotal role of the interstitial cells of Cajal in the nitric oxide signaling pathway of rat small intestine. Morphological evidence. Cell and Tissue Research, 305, 331-340.
Sanders, K. M. (2019). Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Advances in Experimental Medicine and Biology, 1124, 3-46.
Sanders, K. M., Hwang, S. J., & Ward, S. M. (2010). Neuroeffector apparatus in gastrointestinal smooth muscle organs. Journal of Physiology, 588(23), 4621-4639.
Sanders, K. M., Koh, S. D., Ro, S., & Ward, S. M. (2012). Regulation of gastrointestinal motility-insights from smooth muscle biology. Nature reviews Gastroenterology & hepatology, 9(11), 633-645.
Sanders, K. M., & Ward, S. M. (2019). Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. British Journal of Pharmacology, 176(2), 212-227.
Sanders, K. M., Ward, S. M., & Koh, S. D. (2014). Interstitial cells: Regulators of smooth muscle function. Physiological Reviews, 94(3), 859-907.
Sarna, S. K. (2008). Are interstitial cells of Cajal plurifunction cells in the gut? American journal of physiology Gastrointestinal and liver physiology, 294(2), G372-G390. Erratum in (2008): Am J Physiol Gastrointest Liver Physiol 294, G1299.
Shaylor, L. A., Hwang, S. J., Sanders, K. M., & Ward, S. M. (2016). Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach. American journal of physiology Gastrointestinal and liver physiology, 311(5), G838-G851.
Shuttleworth, C. W., Xue, C., Ward, S. M., de Vente, J., & Sanders, K. M. (1993). Immunohistochemical localization of 3',5'-cyclic guanosine monophosphate in the canine proximal colon: Responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience, 56(2), 513-522.
So, I., & Kim, K. W. (2003). Nonselective cation channels activated by the stimulation of muscarinic receptors in mammalian gastric smooth muscle. Journal of Smooth Muscle Research, 39(6), 231-247.
Sternini, C., Su, D., Gamp, P. D., & Bunnett, N. W. (1995). Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. Journal of Comparative Neurology, 358(4), 531-540.
Sung, T. S., Hwang, S. J., Koh, S. D., Bayguinov, Y., Peri, L. E., Blair, P. J., Webb, T. I., Pardo, D. M., Rock, J. R., Sanders, K. M., & Ward, S. M. (2018). The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. Journal of Physiology, 596(9), 1549-1574.
Tack, J., Demedts, I., Meulemans, A., Schuurkes, J., & Janssens, J. (2002). Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut, 51(2), 219-224.
van Helden, D. F., Imtiaz, M. S., Nurgaliyeva, K., von der Weid, P. Y., & Dosen, P. J. (2000). Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. Journal of Physiology, 524(1), 245-265.
Ward, S. M., Beckett, E. A., Wang, X., Baker, F., Khoyi, M., & Sanders, K. M. (2000). Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. Journal of Neuroscience, 20(4), 1393-1403.
Ward, S. M., Burns, A. J., Torihashi, S., & Sanders, K. M. (1994). Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. Journal of Physiology, 480(1), 91-97.
Ward, S. M., Sanders, K. M., & Hirst, G. D. (2004). Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterology and Motility, 16(s1), 112-117.
Worth, A. A., Forrest, A. S., Peri, L. E., Ward, S. M., Hennig, G. W., & Sanders, K. M. (2015). Regulation of gastric electrical and mechanical activity by cholinesterases in mice. Journal of Neurogastroenterology and Motility, 21(2), 200-216.
Zhang, Y., Carmichael, S. A., Wang, X. Y., Huizinga, J. D., & Paterson, W. G. (2010). Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. American Journal of Physiology Gastrointestinal and Liver Physiology, 298, G14-G24.
Zhu, M. H., Kim, T. W., Ro, S., Yan, W., Ward, S. M., Koh, S. D., & Sanders, K. M. (2009). A Ca2+-activated Cl- conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. Journal of Physiology, 587, 4905-4918.
Zhu, M. H., Sung, I. K., Zheng, H., Sung, T. S., Britton, F. C., O'Driscoll, K., Koh, S. D., & Sanders, K. M. (2011). Muscarinic activation of Ca2+-activated Cl- current in interstitial cells of Cajal. Journal of Physiology , 589, 4565-4582.

Auteurs

Sung Jin Hwang (SJ)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Bernard T Drumm (BT)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Min Kyung Kim (MK)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Ju Hyeong Lyu (JH)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Sal Baker (S)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Kenton M Sanders (KM)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Sean M Ward (SM)

Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH