Live-cell imaging of genomic loci with Cas9 variants.


Journal

Biotechnology journal
ISSN: 1860-7314
Titre abrégé: Biotechnol J
Pays: Germany
ID NLM: 101265833

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 14 08 2022
received: 20 07 2021
accepted: 22 08 2022
pubmed: 5 9 2022
medline: 25 2 2023
entrez: 4 9 2022
Statut: ppublish

Résumé

Endonuclease-deactivated clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (dCas9) has been repurposed for live-cell imaging of genomic loci. Engineered or evolved dCas9 variants have been developed to increase the applicability of the CRISPR/dCas9 system. However, there have been no systematic comparisons of these dCas9 variants in terms of their performance in the visualization of genomic loci. Here we demonstrate that dSpCas9 and its variants deSpCas9(1.1), dSpCas9-HF1, devoCas9, and dxCas9(3.7) can be used for CRISPR-based live-cell genomic imaging. dSpCas9 had the greatest utility, with a high labeling efficiency of repetitive sequences-including those with a low number of repeats-and good compatibility with target RNA sequences at the MUC4 locus that varied in length from 13 to 23 nucleotides. We combined CRISPR-Tag with the dSpCas9 imaging system to observe the dynamics of the Tet promoter and found that its movement was restricted when it was active. These novel Cas9 variants provide a new set of tools for investigating the spatiotemporal regulation of gene expression through live imaging of genomic sites.

Sections du résumé

BACKGROUND BACKGROUND
Endonuclease-deactivated clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (dCas9) has been repurposed for live-cell imaging of genomic loci. Engineered or evolved dCas9 variants have been developed to increase the applicability of the CRISPR/dCas9 system. However, there have been no systematic comparisons of these dCas9 variants in terms of their performance in the visualization of genomic loci.
MAIN METHODS AND MAJOR RESULTS RESULTS
Here we demonstrate that dSpCas9 and its variants deSpCas9(1.1), dSpCas9-HF1, devoCas9, and dxCas9(3.7) can be used for CRISPR-based live-cell genomic imaging. dSpCas9 had the greatest utility, with a high labeling efficiency of repetitive sequences-including those with a low number of repeats-and good compatibility with target RNA sequences at the MUC4 locus that varied in length from 13 to 23 nucleotides. We combined CRISPR-Tag with the dSpCas9 imaging system to observe the dynamics of the Tet promoter and found that its movement was restricted when it was active.
CONCLUSIONS AND IMPLICATIONS CONCLUSIONS
These novel Cas9 variants provide a new set of tools for investigating the spatiotemporal regulation of gene expression through live imaging of genomic sites.

Identifiants

pubmed: 36058644
doi: 10.1002/biot.202100381
doi:

Substances chimiques

Endonucleases EC 3.1.-
RNA 63231-63-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2100381

Subventions

Organisme : the National Natural Science Foundation of China
ID : 82072329
Organisme : the National Natural Science Foundation of China
ID : 82070002
Organisme : the National Natural Science Foundation of China
ID : 81872511
Organisme : National Science and Technology Major Project
ID : 2018ZX10301101
Organisme : Frontier Research Program of Bioland Laboratory
ID : 2018GZR110105005

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823.
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823-826.
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442-451.
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173-1183.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712.
Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71.
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, E2579-2586.
Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529, 490-495.
Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84-88.
Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F., Prandi, D., Romanel, A., Demichelis, F., Inga, A., & Cereseto, A. (2018). A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology, 36, 265-271.
Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H. A., Lin, Z., & Liu, D. R. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556, 57-63.
Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., & Huang, B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479-1491.
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420-424.
Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., & Lombardo, A. (2016). Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell, 167, 219-232. e214.
Fujita, T., & Fujii, H. (2013). Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochemical and Biophysical Research Communications, 439, 132-136.
Gu, B., Swigut, T., Spencley, A., Bauer, M. R., Chung, M., Meyer, T., & Wysocka, J. (2018). Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science, 359, 1050-1055.
Chen, B., Zou, W., Xu, H., Liang, Y., & Huang, B. (2018). Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nature Communication, 9, 5065.
Ma, H., Tu, L. - C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., & Pederson, T. (2016). CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Journal of Cell Biology, 214, 529-537.
Wu, X., Mao, S., Yang, Y., Rushdi, M. N., Krueger, C. J., & Chen, A. K. (2018). A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Research, 46, e80-e80.
Ma, H., Tu, L. C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., & Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 34, 528-530.
Cheng, A. W., Jillette, N., Lee, P., Plaskon, D., Fujiwara, Y., Wang, W., Taghbalout, A., & Wang, H. (2016). Casilio: A versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Research, 26, 254-257.
Maass, P. G., Barutcu, A. R., Shechner, D. M., Weiner, C. L., Melé, M., & Rinn, J. L. (2018). Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nature Structural & Molecular Biology, 25, 176-184.
Mao, S., Ying, Y., Wu, X., Krueger, C. J., & Chen, A. K. (2019). CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Research, 47, e131-e131.
Clow, P. A., Du, M., Jillette, N., Taghbalout, A., Zhu, J. J., & Cheng, A. W. (2022). CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus. Nature Communication, 13, 1871.
Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L., Zhang, E. T., Beheiry, M. E., Masson, J. B., Dahan, M., Liu, Z., Doudna, J. A., & Tjian, R. (2015). Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 350, 823-826.
Ma, Y., Wang, M., Li, W., Zhang, Z., Zhang, X., Wu, G., Tan, T., Cui, Z., & Zhang, X. E. (2017). Live visualization of HIV-1 proviral DNA using a dual-color-labeled CRISPR system. Analytical Chemistry, 89, 12896-12901.
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159, 635-646.
Ye, H., Rong, Z., & Lin, Y. (2017). Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell, 8, 853-855.
Sue, V. S., & Walter, K. (2002). Basic FISH techniques and troublesdhooting. New Jersey: Human Press.
Makhija, E., Jokhun, D. S., & Shivashankar, G. V. (2016). Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proceedings of the National Academy of Sciences of the United States of America, 113, E32-E40.
Xu, X., Tan, X., Tampe, B., Wilhelmi, T., Hulshoff, M. S., Saito, S., Moser, T., Kalluri, R., Hasenfuss, G., Zeisberg, E. M., & Zeisberg, M. (2018). High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nature Communication, 9, 3509.
Zhang, D., Zhang, H., Li, T., Chen, K., Qiu, J. L., & Gao, C. (2017). Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 18, 191.
Grevet, J. D., Lan, X., Hamagami, N., Edwards, C. R., Sankaranarayanan, L., Ji, X., Bhardwaj, S. K., Face, C. J., Posocco, D. F., Abdulmalik, O., Keller, C. A., Giardine, B., Sidoli, S., Garcia, B. A., Chou, S. T., Liebhaber, S. A., Hardison, R. C., Shi, J., & Blobel, G. A. (2018). Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science, 361, 285-290.
Tsukamoto, T., Hashiguchi, N., Janicki, S. M., Tumbar, T., Belmont, A. S., & Spector, D. L. (2000). Visualization of gene activity in living cells. Nature Cell Biology, 2, 871-878.
Germier, T., Audibert, S., Kocanova, S., Lane, D., & Bystricky, K. (2018). Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods (San Diego, Calif.), 142, 16-23.
Gal, N., Lechtman-Goldstein, D., & Weihs, D. (2013). Particle tracking in living cells: A review of the mean square displacement method and beyond. Rheologica Acta, 52, 425-443.
Dahlman, J. E., Abudayyeh, O. O., Joung, J., Gootenberg, J. S., Zhang, F., & Konermann, S. (2015). Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nature Biotechnology, 33, 1159-1161.
Chen, B., Hu, J., Almeida, R., Liu, H., Balakrishnan, S., Covill-Cooke, C., Lim, W. A., & Huang, B. (2016). Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research, 44, e75.
Yang, L. Z., Wang, Y., Li, S. Q., Yao, R. W., Luan, P. F., Wu, H., Carmichael, G. G., & Chen, L. L. (2019). Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Molecular Cell, 76, 981-997. e987.
Robson, M. I., Ringel, A. R., & Mundlos, S. (2019). Regulatory landscaping: How enhancer-promoter communication is sculpted in 3D. Molecular Cell, 74, 1110-1122.
Field, A., & Adelman, K. (2020). Evaluating enhancer function and transcription. Annual Review of Biochemistry, 89, 213-234.
Ma, S., Wang, X., Hu, Y., Lv, J., Liu, C., Liao, K., Guo, X., Wang, D., Lin, Y., & Rong, Z. (2020). Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain. Nucleic Acids Research, 48, 10590-10601.
Germier, T., Kocanova, S., Walther, N., Bancaud, A., Shaban, H. A., Sellou, H., Politi, A. Z., Ellenberg, J., Gallardo, F., & Bystricky, K. (2017). Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophysical Journal, 113, 1383-1394.
Schmid-Burgk, J. L., Gao, L., Li, D., Gardner, Z., Strecker, J., Lash, B., & Zhang, F. (2020). Highly parallel profiling of Cas9 variant specificity. Molecular Cell, 78, 794-800. e798.
Kim, N., Kim, H. K., Lee, S., Seo, J. H., Choi, J. W., Park, J., Min, S., Yoon, S., Cho, S. R., & Kim, H. H. (2020). Prediction of the sequence-specific cleavage activity of Cas9 variants. Nature Biotechnology, 38, 1328-1336.
Wang, H., Nakamura, M., Abbott, T. R., Zhao, D., Luo, K., Yu, C., Nguyen, C. M., Lo, A., Daley, T. P., La Russa, M., Liu, Y., & Qi, L. S. (2019). CRISPR-mediated live imaging of genome editing and transcription. Science, 365, 1301-1305.
Xu, H., Wang, J., Liang, Y., Fu, Y., Li, S., Huang, J., Xu, H., Zou, W., & Chen, B. (2020). TriTag: An integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Research, 48, e127.
Ma, H., Tu, L. C., Naseri, A., Chung, Y. C., Grunwald, D., Zhang, S., & Pederson, T. (2018). CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nature Methods, 15, 928-931.
Qin, P., Parlak, M., Kuscu, C., Bandaria, J., Mir, M., Szlachta, K., Singh, R., Darzacq, X., Yildiz, A., & Adli, M. (2017). Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nature Communication, 8, 14725.

Auteurs

Huiying Ye (H)

Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.

Chao Jiang (C)

Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.

Lian Li (L)

Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.

Hui Li (H)

Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
School of Systems Science, Beijing Normal University, Beijing, China.

Zhili Rong (Z)

Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.

Ying Lin (Y)

Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.
Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells
Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH