Lipophorin receptors regulate mushroom body development and complex behaviors in Drosophila.


Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
07 09 2022
Historique:
received: 07 12 2021
accepted: 17 08 2022
entrez: 7 9 2022
pubmed: 8 9 2022
medline: 11 9 2022
Statut: epublish

Résumé

Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.

Sections du résumé

BACKGROUND
Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain.
RESULTS
We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events.
CONCLUSIONS
These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.

Identifiants

pubmed: 36071487
doi: 10.1186/s12915-022-01393-1
pii: 10.1186/s12915-022-01393-1
pmc: PMC9454125
doi:

Substances chimiques

Cell Adhesion Molecules, Neuronal 0
Drosophila Proteins 0
Extracellular Matrix Proteins 0
Lpr1 protein, Drosophila 0
Nerve Tissue Proteins 0
Receptors, Cytoplasmic and Nuclear 0
Reelin Protein 0
dab protein, Drosophila 0
lipophorin receptor 0
Serine Endopeptidases EC 3.4.21.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

198

Informations de copyright

© 2022. The Author(s).

Références

PLoS Genet. 2008 Jul 04;4(7):e1000111
pubmed: 18604272
Structure. 2010 Mar 10;18(3):320-31
pubmed: 20223215
Development. 2018 May 14;145(10):
pubmed: 29759980
Cell Rep. 2018 Oct 30;25(5):1181-1192.e4
pubmed: 30380410
Neuroscience. 2009 Aug 18;162(2):282-91
pubmed: 19414061
Biochem J. 2017 Sep 7;474(18):3137-3165
pubmed: 28887403
PLoS Genet. 2011 Feb 10;7(2):e1001297
pubmed: 21347279
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7957-E7965
pubmed: 27856766
Elife. 2020 Apr 23;9:
pubmed: 32324135
Science. 2000 Mar 10;287(5459):1834-7
pubmed: 10710313
Biochim Biophys Acta. 2005 Sep 5;1736(1):10-29
pubmed: 16099208
EMBO J. 1997 Jan 2;16(1):121-32
pubmed: 9009273
Nature. 1997 Oct 16;389(6652):733-7
pubmed: 9338785
Neuron. 2018 Mar 7;97(5):1049-1062.e6
pubmed: 29429939
PLoS One. 2019 Jan 16;14(1):e0209331
pubmed: 30650089
J Cell Sci. 2008 Jun 1;121(11):1869-75
pubmed: 18477607
Genes Dev. 1993 Mar;7(3):441-53
pubmed: 7680635
Learn Mem. 1998 May-Jun;5(1-2):38-51
pubmed: 10454371
J Lipid Res. 2019 Jul;60(7):1199-1211
pubmed: 31085629
PLoS One. 2014 Apr 04;9(4):e93672
pubmed: 24705369
Elife. 2014 Aug 19;3:e02395
pubmed: 25139953
J Biol Chem. 2002 Oct 18;277(42):39944-52
pubmed: 12167620
Neuron. 2000 Jan;25(1):129-38
pubmed: 10707978
Learn Mem. 1998 May-Jun;5(1-2):179-91
pubmed: 10454382
Brain Res Mol Brain Res. 2003 Apr 10;112(1-2):33-45
pubmed: 12670700
Cell. 1999 Jun 11;97(6):689-701
pubmed: 10380922
Curr Biol. 2000 Jul 27-Aug 10;10(15):877-85
pubmed: 10959835
Neuron. 2001 Sep 27;31(6):929-41
pubmed: 11580894
Nature. 2000 Sep 28;407(6803):530-5
pubmed: 11029007
J Biol Chem. 1998 Nov 27;273(48):32213-21
pubmed: 9822699
PLoS Genet. 2015 Jun 29;11(6):e1005356
pubmed: 26121667
Development. 2010 Nov;137(21):3719-27
pubmed: 20940230
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):E222-9
pubmed: 21606364
Cell Rep. 2015 May 26;11(8):1293-304
pubmed: 25981040
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150055
pubmed: 26598732
Biochemistry. 2003 Aug 12;42(31):9355-64
pubmed: 12899622
Nature. 2000 Sep 28;407(6803):527-30
pubmed: 11029006
Development. 2004 Apr;131(8):1663-77
pubmed: 15084453
J Neurogenet. 1985 Feb;2(1):1-30
pubmed: 4020527
J Comp Physiol A. 1985 Sep;157(2):263-77
pubmed: 3939242
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Neurosci. 2013 Mar 20;33(12):5175-81
pubmed: 23516283
J Vis Exp. 2007;(4):200
pubmed: 18979004
J Neurosci. 2010 Nov 3;30(44):14759-72
pubmed: 21048135
Front Cell Neurosci. 2016 May 27;10:137
pubmed: 27303268
Science. 2001 Aug 17;293(5533):1330-3
pubmed: 11397912
J Cell Sci. 2002 Nov 1;115(Pt 21):4001-12
pubmed: 12356906
Elife. 2015 Jan 07;4:
pubmed: 25564731
Development. 2008 Dec;135(24):4025-35
pubmed: 19004854
J Biol Chem. 1994 Sep 16;269(37):23268-73
pubmed: 8083232
J Biol Chem. 2002 Dec 20;277(51):49958-64
pubmed: 12376533
PLoS Genet. 2009 Jun;5(6):e1000532
pubmed: 19557185
J Neurogenet. 2009;23(1-2):156-72
pubmed: 19140035
Development. 1999 Sep;126(18):4065-76
pubmed: 10457015
Yale J Biol Med. 2012 Mar;85(1):19-28
pubmed: 22461740
Nature. 2006 Jun 8;441(7094):753-6
pubmed: 16760979
Neuron. 1999 Oct;24(2):471-9
pubmed: 10571240
Science. 2001 Nov 2;294(5544):1115-7
pubmed: 11691997
Int J Mol Sci. 2018 Oct 09;19(10):
pubmed: 30304853
J Neurosci. 2010 May 5;30(18):6461-5
pubmed: 20445072
Neuron. 1999 Oct;24(2):481-9
pubmed: 10571241
Development. 2007 Jan;134(1):43-53
pubmed: 17138662
J Neurosci. 1999 Feb 15;19(4):1345-58
pubmed: 9952412
Development. 2011 Jan;138(1):149-58
pubmed: 21138977
J Genet Genomics. 2019 Jan 20;46(1):5-17
pubmed: 30594466
Neuron. 2004 Jan 8;41(1):71-84
pubmed: 14715136
Neurosci Lett. 2014 Feb 7;560:16-20
pubmed: 24334164
Curr Opin Neurobiol. 2021 Feb;66:135-143
pubmed: 33197872
Curr Biol. 2012 Nov 6;22(21):1981-9
pubmed: 23063437
Annu Rev Biochem. 2002;71:405-34
pubmed: 12045102
Prog Neurobiol. 2010 Aug;91(4):257-74
pubmed: 20417248
Front Neural Circuits. 2018 Nov 27;12:103
pubmed: 30546298
Transl Psychiatry. 2021 May 17;11(1):292
pubmed: 34001859
Curr Biol. 2015 Nov 16;25(22):2915-27
pubmed: 26455303
J Neurosci. 1997 Jan 1;17(1):23-31
pubmed: 8987733
J Cell Sci. 2004 Sep 1;117(Pt 19):4527-36
pubmed: 15316068
Nat Commun. 2015 Dec 11;6:10115
pubmed: 26656654
Atherosclerosis. 2018 Aug;275:273-295
pubmed: 29980055
Trends Cardiovasc Med. 2000 May;10(4):148-55
pubmed: 11239794
Nat Commun. 2021 Apr 23;12(1):2408
pubmed: 33893307
Science. 1996 Dec 20;274(5295):2104-7
pubmed: 8953046
Nature. 1995 Apr 20;374(6524):719-23
pubmed: 7715726
Mol Cell Biol. 2007 Oct;27(20):7113-24
pubmed: 17698586
Development. 2012 Jul;139(14):2510-22
pubmed: 22675205
Commun Integr Biol. 2009 Jul;2(4):375-7
pubmed: 19721896
Neuron. 2004 Dec 2;44(5):779-93
pubmed: 15572110
J Lipid Res. 2004 Mar;45(3):403-9
pubmed: 14657206
Bioinform Biol Insights. 2015 Dec 20;9:187-93
pubmed: 26715843
Nat Rev Neurosci. 2003 Apr;4(4):266-75
pubmed: 12671643
Curr Opin Neurobiol. 2015 Dec;35:178-84
pubmed: 26496148
Nature. 1997 Jan 2;385(6611):70-4
pubmed: 8985248
Mol Cell Biol. 1999 Jul;19(7):5179-88
pubmed: 10373567
Eur J Neurosci. 2014 May;39(10):1586-601
pubmed: 24605774
J Biol Chem. 2003 Sep 19;278(38):36572-81
pubmed: 12826668
J Cell Physiol. 2017 May;232(5):1187-1199
pubmed: 27653801
J Biol Chem. 2001 May 11;276(19):16008-14
pubmed: 11279201
Neuron. 2005 Aug 18;47(4):567-79
pubmed: 16102539
Elife. 2015 Mar 31;4:
pubmed: 25824290
Trends Endocrinol Metab. 2017 Apr;28(4):273-284
pubmed: 28057414
Mol Cell Neurosci. 2007 Oct;36(2):158-73
pubmed: 17720534
Development. 2006 May;133(9):1845-54
pubmed: 16613832
Cell Metab. 2017 Nov 7;26(5):719-737.e6
pubmed: 28965825
Insect Biochem Mol Biol. 2006 Apr;36(4):250-63
pubmed: 16551539
Nature. 2002 Mar 28;416(6879):442-7
pubmed: 11919635

Auteurs

Francisca Rojo-Cortés (F)

Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Nicolás Fuenzalida-Uribe (N)

Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico.

Victoria Tapia-Valladares (V)

Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Candy B Roa (CB)

Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Sergio Hidalgo (S)

Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, USA.

María-Constanza González-Ramírez (MC)

Laboratorio Neurodesarrollo, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Carlos Oliva (C)

Laboratorio Neurodesarrollo, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Jorge M Campusano (JM)

Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. jcampusano@bio.puc.cl.

María-Paz Marzolo (MP)

Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. mmarzolo@bio.puc.cl.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH