Toward learning the principles of plant gene regulation.
DNA motifs
DNA regulatory code
deep neural networks
gene expression prediction
gene regulatory structure
machine learning
Journal
Trends in plant science
ISSN: 1878-4372
Titre abrégé: Trends Plant Sci
Pays: England
ID NLM: 9890299
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
received:
09
04
2022
revised:
09
08
2022
accepted:
17
08
2022
pubmed:
14
9
2022
medline:
15
11
2022
entrez:
13
9
2022
Statut:
ppublish
Résumé
Advanced machine learning (ML) algorithms produce highly accurate models of gene expression, uncovering novel regulatory features in nucleotide sequences involving multiple cis-regulatory regions across whole genes and structural properties. These broaden our understanding of gene regulation and point to new principles to test and adopt in the field of plant science.
Identifiants
pubmed: 36100536
pii: S1360-1385(22)00216-3
doi: 10.1016/j.tplants.2022.08.010
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1206-1208Informations de copyright
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests No interests are declared.