Diffusion equation for the longitudinal spectral diffusion: the case of the RIDME experiment.
Journal
Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160
Informations de publication
Date de publication:
05 Oct 2022
05 Oct 2022
Historique:
pubmed:
22
9
2022
medline:
7
10
2022
entrez:
21
9
2022
Statut:
epublish
Résumé
Relaxation-induced dipolar modulation enhancement (RIDME) time trace shapes reveal linear scaling with the proton concentration in homogeneous glassy samples. We describe here an approximate diffusion equation-based analysis of such data, which uses only two fit parameters and allows for global data fitting with good accuracy. By construction, the approach should be transferable to other pulse EPR experiments with longitudinal mixing block(s) present. The two fit parameters appear to be sensitive to the type of the glassy matrix and can be thus used for sample characterisation. The estimates suggest that the presented technique should be sensitive to protons at distances up to 3 nm from the electron spin at a 90% matrix deuteration level. We propose that a structural method might be developed based on such an intermolecular hyperfine (ih-)RIDME technique, which would be useful, for instance, in structural biology or dynamic nuclear polarisation experiments.
Identifiants
pubmed: 36129124
doi: 10.1039/d2cp03039j
pmc: PMC9533373
doi:
Substances chimiques
Protons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
23517-23531Références
J Phys Chem Lett. 2020 May 7;11(9):3396-3400
pubmed: 32282218
Phys Chem Chem Phys. 2020 Oct 7;22(38):21707-21730
pubmed: 32970079
Phys Chem Chem Phys. 2019 Apr 17;21(16):8228-8245
pubmed: 30920556
J Magn Reson. 2009 Nov;201(1):48-56
pubmed: 19758831
Angew Chem Int Ed Engl. 2009;48(27):4996-5000
pubmed: 19492374
Sci Adv. 2019 Jul 26;5(7):eaax2743
pubmed: 31360772
J Am Chem Soc. 2006 Sep 6;128(35):11385-90
pubmed: 16939261
J Magn Reson. 2016 Nov;272:108-113
pubmed: 27684788
J Phys Chem B. 2015 Oct 29;119(43):13534-42
pubmed: 26000868
Methods Enzymol. 2015;563:251-84
pubmed: 26478488
J Am Chem Soc. 2013 Aug 28;135(34):12790-7
pubmed: 23961876
J Magn Reson. 2011 Dec;213(2):316-25
pubmed: 22152351
J Phys Chem B. 2021 May 27;125(20):5358-5364
pubmed: 33998795
Phys Chem Chem Phys. 2016 Nov 9;18(44):30857-30866
pubmed: 27801444
Phys Rev B Condens Matter. 1985 Nov 1;32(9):5608-5627
pubmed: 9937807
Methods Mol Biol. 2000;145:147-69
pubmed: 10820721
J Phys Chem Lett. 2018 Oct 18;9(20):6119-6123
pubmed: 30277780
J Phys Chem Lett. 2014 Nov 20;5(22):3970-5
pubmed: 26276479
Inorg Chem. 2017 Jul 17;56(14):8106-8113
pubmed: 28657714
J Magn Reson. 2009 Sep;200(1):81-7
pubmed: 19581114
Annu Rev Phys Chem. 2012;63:419-46
pubmed: 22404592
J Am Chem Soc. 2012 Feb 1;134(4):2284-91
pubmed: 22191415
Angew Chem Int Ed Engl. 2020 Jan 2;59(1):373-379
pubmed: 31539187
J Phys Chem Lett. 2019 Apr 4;10(7):1477-1481
pubmed: 30864799
Biol Chem. 2013 Oct;394(10):1281-300
pubmed: 23912220