Function-Related Asymmetry of the Interactions between Matrix Loops and Conserved Sequence Motifs in the Mitochondrial ADP/ATP Carrier.
ADP/ATP carrier (AAC)
MCF motif
loops
mitochondrial carrier family (MCF)
molecular dynamics simulation
transporters
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
17 Sep 2022
17 Sep 2022
Historique:
received:
28
07
2022
revised:
08
09
2022
accepted:
13
09
2022
entrez:
23
9
2022
pubmed:
24
9
2022
medline:
28
9
2022
Statut:
epublish
Résumé
The ADP/ATP carrier (AAC) plays a central role in oxidative metabolism by exchanging ATP and ADP across the inner mitochondrial membrane. Previous experiments have shown the involvement of the matrix loops of AAC in its function, yet potential mechanisms remain largely elusive. One obstacle is the limited information on the structural dynamics of the matrix loops. In the current work, unbiased all-atom molecular dynamics (MD) simulations were carried out on c-state wild-type AAC and mutants. Our results reveal that: (1) two ends of a matrix loop are tethered through interactions between the residue of triplet 38 (Q38, D143 and Q240) located at the C-end of the odd-numbered helix and residues of the [YF]xG motif located before the N-end of the short matrix helix in the same domain; (2) the initial progression direction of a matrix loop is determined by interactions between the negatively charged residue of the [DE]G motif located at the C-end of the short matrix helix and the capping arginine (R30, R139 and R236) in the previous domain; (3) the two chemically similar residues D and E in the highly conserved [DE]G motif are actually quite different; (4) the N-end of the M3 loop is clamped by the [DE]G motif and the capping arginine of domain 2 from the two sides, which strengthens interactions between domain 2 and domain 3; and (5) a highly asymmetric stable core exists within domains 2 and 3 at the m-gate level. Moreover, our results help explain almost all extremely conserved residues within the matrix loops of the ADP/ATP carriers from a structural point of view. Taken together, the current work highlights asymmetry in the three matrix loops and implies a close relationship between asymmetry and ADP/ATP transport.
Identifiants
pubmed: 36142790
pii: ijms231810877
doi: 10.3390/ijms231810877
pmc: PMC9502086
pii:
doi:
Substances chimiques
Adenosine Diphosphate
61D2G4IYVH
Adenosine Triphosphate
8L70Q75FXE
Mitochondrial ADP, ATP Translocases
9068-80-8
Arginine
94ZLA3W45F
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 32171241
Organisme : Natural Science Foundation of Zhejiang Province
ID : LY18C050002
Références
Molecules. 2022 Feb 05;27(3):
pubmed: 35164338
FEBS Lett. 2005 Nov 7;579(27):6031-6
pubmed: 16226253
J Cell Physiol. 2020 Jan;235(1):151-165
pubmed: 31187491
Biochim Biophys Acta. 2008 Oct;1778(10):1978-2021
pubmed: 18510943
Biophys J. 2009 Jul 8;97(1):50-8
pubmed: 19580743
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17766-71
pubmed: 19001266
Biochemistry. 2004 Dec 7;43(48):15204-9
pubmed: 15568812
Biochem Pharmacol. 2016 Jan 15;100:112-32
pubmed: 26616220
Pflugers Arch. 2004 Feb;447(5):689-709
pubmed: 14598172
Annu Rev Biochem. 2021 Jun 20;90:535-558
pubmed: 33556281
J Chem Theory Comput. 2008 Mar;4(3):435-47
pubmed: 26620784
Chem Rev. 2016 Jun 8;116(11):6391-423
pubmed: 26889708
Biochemistry. 1999 Jan 19;38(3):1050-6
pubmed: 9894001
Mitochondrion. 2019 Jul;47:94-102
pubmed: 31129042
PLoS One. 2007 Sep 12;2(9):e880
pubmed: 17849009
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Comput Chem. 2004 Aug;25(11):1400-15
pubmed: 15185334
Biochemistry. 1994 Aug 16;33(32):9530-6
pubmed: 7520750
J Mol Biol. 1998 Mar 27;277(2):285-308
pubmed: 9514746
FEBS Lett. 1982 Aug 2;144(2):250-4
pubmed: 6288471
Am J Physiol Cell Physiol. 2007 Oct;293(4):C1347-61
pubmed: 17670888
Comput Struct Biotechnol J. 2022 Apr 05;20:1829-1840
pubmed: 35521544
Nat Methods. 2015 Jan;12(1):7-8
pubmed: 25549265
Nature. 2003 Nov 6;426(6962):39-44
pubmed: 14603310
J Bioenerg Biomembr. 1993 Oct;25(5):435-46
pubmed: 8132484
Biochem Biophys Res Commun. 2002 Dec 6;299(3):494-7
pubmed: 12445829
Nat Genet. 2015 Aug;47(8):926-32
pubmed: 26168012
Biochim Biophys Acta. 2016 Jun;1857(6):772-81
pubmed: 26874054
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Nat Struct Mol Biol. 2015 Aug;22(8):636-41
pubmed: 26167881
Hoppe Seylers Z Physiol Chem. 1982 Mar;363(3):345-9
pubmed: 7076130
Biochim Biophys Acta Biomembr. 2021 Jan 1;1863(1):183466
pubmed: 32871114
FEBS Lett. 2010 May 3;584(9):1931-9
pubmed: 19861126
J Biol Chem. 1993 Oct 15;268(29):22181-7
pubmed: 7691823
Nat Cell Biol. 2010 Jun;12(6):553-562
pubmed: 20436477
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2617-22
pubmed: 16469842
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Cell. 2019 Jan 24;176(3):435-447.e15
pubmed: 30611538
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E426-34
pubmed: 24474793
J Lipid Res. 2022 Jun;63(6):100227
pubmed: 35569528
Biochemistry. 2005 Dec 13;44(49):16310-20
pubmed: 16331992
FEBS Lett. 1994 Jun 6;346(1):48-54
pubmed: 8206158
J Chem Phys. 2007 Jan 7;126(1):014101
pubmed: 17212484
J Comput Chem. 2013 Sep 30;34(25):2135-45
pubmed: 23832629
J Comput Chem. 2014 Oct 15;35(27):1997-2004
pubmed: 25130509
Cell Mol Life Sci. 2014 Jan;71(2):349-64
pubmed: 23800987