Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review.
Accelerated crop improvement
Cross-validation
Genetic gain
Integrated GS
SOP for GS
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
23 Sep 2022
23 Sep 2022
Historique:
received:
20
11
2021
accepted:
11
09
2022
entrez:
23
9
2022
pubmed:
24
9
2022
medline:
28
9
2022
Statut:
epublish
Résumé
Genomic selection and its importance in crop breeding. Integration of GS with new breeding tools and developing SOP for GS to achieve maximum genetic gain with low cost and time. The success of conventional breeding approaches is not sufficient to meet the demand of a growing population for nutritious food and other plant-based products. Whereas, marker assisted selection (MAS) is not efficient in capturing all the favorable alleles responsible for economic traits in the process of crop improvement. Genomic selection (GS) developed in livestock breeding and then adapted to plant breeding promised to overcome the drawbacks of MAS and significantly improve complicated traits controlled by gene/QTL with small effects. Large-scale deployment of GS in important crops, as well as simulation studies in a variety of contexts, addressed G × E interaction effects and non-additive effects, as well as lowering breeding costs and time. The current study provides a complete overview of genomic selection, its process, and importance in modern plant breeding, along with insights into its application. GS has been implemented in the improvement of complex traits including tolerance to biotic and abiotic stresses. Furthermore, this review hypothesises that using GS in conjunction with other crop improvement platforms accelerates the breeding process to increase genetic gain. The objective of this review is to highlight the development of an appropriate GS model, the global open source network for GS, and trans-disciplinary approaches for effective accelerated crop improvement. The current study focused on the application of data science, including machine learning and deep learning tools, to enhance the accuracy of prediction models. Present study emphasizes on developing plant breeding strategies centered on GS combined with routine conventional breeding principles by developing GS-SOP to achieve enhanced genetic gain.
Identifiants
pubmed: 36149531
doi: 10.1007/s00425-022-03996-y
pii: 10.1007/s00425-022-03996-y
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
87Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Akdemir D, Isidro-Sánchez J (2019) Design of training populations for selective phenotyping in genomic prediction. Sci Rep 9:1–5
doi: 10.1038/s41598-018-38081-6
Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200
pubmed: 29687284
pmcid: 5945794
doi: 10.1007/s11103-018-0732-y
Anilkumar C, Sah RP, Muhammed AT, Sunitha NC, Behera S, Marndi BC, Sharma TR, Singh AK (2022a) Genomic selection in rice: current status and future prospects. In: Elias AA, Goel S (Eds.). Genomic selection in plants a guide for breeders (1st Ed.). CRC Press. pp. 68–82. https://doi.org/10.1201/9781003214991
Anilkumar C, Sah RP, Muhammed Azharudheen TP, Behera S, Singh N, Prakash NR, Sunitha NC, Devanna BN, Marndi BC, Patra BC, Nair SK (2022b) Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-022-17402-w
doi: 10.1038/s41598-022-17402-w
Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genom 16:1–3
doi: 10.1186/s12864-015-2212-y
Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466
pubmed: 29555431
pmcid: 5931794
doi: 10.1016/j.tplants.2018.02.001
Arruda MP, Brown PJ, Lipka AE, Krill AM, Thurber C, Kolb FL (2015) Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8:1–12
doi: 10.3835/plantgenome2015.01.0003
Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, Dong Y, Foresman BJ, Kolb FL (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36:1–11
doi: 10.1007/s11032-016-0508-5
Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132
doi: 10.3835/plantgenome2011.02.0007
Azizinia S, Bariana H, Kolmer J, Pasam R, Bhavani S, Chhetri M, Toor A, Miah H, Hayden MJ, Pino del Carpio D, Bansal U (2020) Genomic prediction of rust resistance in tetraploid wheat under field and controlled environment conditions. Agron 10:1843
doi: 10.3390/agronomy10111843
Baba T, Momen M, Campbell MT, Walia H, Morota G (2020) Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping. PLoS ONE 15(2):e0228118
pubmed: 32012182
pmcid: 6996807
doi: 10.1371/journal.pone.0228118
Bartholome J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C, Bouffier L (2016) Performance of genomic prediction within and across generations in maritime pine. BMC Genom 17:604
doi: 10.1186/s12864-016-2879-8
Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36
pubmed: 26566822
doi: 10.1016/j.plantsci.2015.08.021
Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA (2016) Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. Plant Genome 9:1–12
doi: 10.3835/plantgenome2016.01.0005
Ben Hassen M, Cao TV, Laval J, Colombi C, Orasen G, Rakotomalala J, Razafinimpiasa L, Bertone C, Biselli C, Cattivelli L, Ahmadi N (2017) Genomic selection for water use efficiency in Japonica rice and evaluation of different parameters implicated on the accuracy level. In: Proceedings Plant and Animal Genome XXV Conference. San Diego: PAG, 1 p. Plant and Animal Genome Conference. 25, San Diego, États-Unis
Ben Hassen M, Bartholomé J, Valè G, Cao TV, Ahmadi N (2018) Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice. G3 2319–2332
Bennewitz J, Solberg T, Meuwissen T (2009) Genomic breeding value estimation using nonparametric additive regression models. Genet Sel Evol 41:20
pubmed: 19284696
pmcid: 2657215
doi: 10.1186/1297-9686-41-20
Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082
doi: 10.2135/cropsci2006.11.0690
Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664
doi: 10.2135/cropsci2008.03.0131
Bernardo R (2014) Genome wide selection when major genes are known. Crop Sci 54:68–75
doi: 10.2135/cropsci2013.05.0315
Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323–2332
pubmed: 27681088
doi: 10.1007/s00122-016-2772-5
Bernardo R (2017) Prospective targeted recombination and genetic gains for quantitative traits in maize. Plant Genome 10:1–9
doi: 10.3835/plantgenome2016.11.0118
Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125:375–385
pubmed: 32296132
pmcid: 7784685
doi: 10.1038/s41437-020-0312-1
Beyene Y, Gowda M, Pérez-Rodríguez P, Olsen M, Robbins KR, Burgueño J, Prasanna BM, Crossa J (2021) Application of genomic selection at the early stage of breeding pipeline in tropical maize. Front Plant Sci 12:685488
pubmed: 34262585
pmcid: 8274566
doi: 10.3389/fpls.2021.685488
Bhandari A, Bartholomé J, Cao-Hamadoun TV, Kumari N, Frouin J, Kumar A, Ahmadi N (2019) Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS ONE 14:e0208871
pubmed: 31059529
pmcid: 6502484
doi: 10.1371/journal.pone.0208871
Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221
pubmed: 28083016
pmcid: 5186759
doi: 10.3389/fgene.2016.00221
Bian YA, Holland J (2018) Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity 118(6):585–593
doi: 10.1038/hdy.2017.4
Brandariz SP, Bernardo R (2019) Small ad hoc versus large general training populations for genome-wide selection in maize biparental crosses. Theor Appl Genet 132:347–353
pubmed: 30390129
doi: 10.1007/s00122-018-3222-3
Buckler ES (2017) Direction of GWAS and GS. Paper presented at the plant and animal genome XXV, San Diego, CA, USA
Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719
Campbell M, Walia H, Morota G (2018) Utilizing random regression models for genomic prediction of a longitudinal trait derived from high-throughput phenotyping. Plant Direct 2(9):e00080
pubmed: 31245746
pmcid: 6508851
doi: 10.1002/pld3.80
Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, Zhang X, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366
pubmed: 29616072
pmcid: 5869257
doi: 10.3389/fpls.2018.00366
Chakraborti M, Anilkumar C, Verma RL, Fiyaz AR, Reshmi Raj KR, Patra BC, Balakrishnan D, Sarkar S, Mondal NP, Kar MK, Meher J, Sundaram RM, Subba Rao LV (2021) Rice breeding in India: eight decades of journey towards enhancing the genetic gain for yield, nutritional quality, and commodity value. ORYZA-An International Journal of Rice 58 (Special Issue): 69–88
Chen L, Li C, Sargolzaei M, Schenkel F (2014) Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. PLoS ONE 9:e101544
pubmed: 25025158
pmcid: 4099124
doi: 10.1371/journal.pone.0101544
Cheng H, Garrick DJ, Fernando RL (2017) Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J Anim Sci Biotechnol 8:1–5
doi: 10.1186/s40104-017-0164-6
Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572
pubmed: 17715053
doi: 10.1098/rstb.2007.2170
Combs E, Bernardo R (2013) Accuracy of genome wide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6:11
doi: 10.3835/plantgenome2012.11.0030
Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311
doi: 10.1071/CP14007
Cowling WA, Li L, Siddique KH, Henryon M, Berg P, Banks RG, Kinghorn BP (2017) Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection. J Exp Bot 68:1927–1939
pubmed: 28499040
Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:170043
doi: 10.3835/plantgenome2017.05.0043
Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60
pubmed: 23572121
doi: 10.1038/hdy.2013.16
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975
pubmed: 28965742
doi: 10.1016/j.tplants.2017.08.011
Cui Y, Li R, Li G, Zhang F, Zhu T, Zhang Q, Ali J, Li Z, Xu S (2020) Hybrid breeding of rice via genomic selection. Plant Biotechnol J 18:57–67
pubmed: 31124256
doi: 10.1111/pbi.13170
de Oliveira EJ, de Resende MD, da Silva SV, Ferreira CF, Oliveira GA, da Silva MS, de Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276
doi: 10.1007/s10681-012-0722-0
Dekkers JC (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341
pubmed: 18076470
doi: 10.1111/j.1439-0388.2007.00701.x
Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601
pubmed: 24970707
doi: 10.1016/j.tplants.2014.05.006
Dong X, Xu X, Li L, Liu C, Tian X, Li W, Chen S (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breed 34(1147):1158
Dong L, Li L, Liu C, Liu C, Geng S, Li X, Huang C, Mao L, Chen S, Xie C (2018) Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant 11:1214–1217
pubmed: 30010025
doi: 10.1016/j.molp.2018.06.011
Đorđević V, Ćeran M, Miladinović J, Balešević-Tubić S, Petrović K, Miladinov Z, Marinković J (2019) Exploring the performance of genomic prediction models for soybean yield using different validation approaches. Mol Breed 39:74
doi: 10.1007/s11032-019-0983-6
Dreisigacker S, Crossa J, Pérez-Rodríguez P, Montesinos-López OA, Rosyara U, Juliana P, Mondal S, Crespo-Herrera L, Govindan V, Singh RP, Braun HJ (2021) Implementation of Genomic Selection in the CIMMYT Global Wheat Program, Findings from the Past 10 Years. Crop Breed Genet Genom 3:e210005
Esuma W, Ozimati A, Kulakow P, Gore MA, Wolfe MD, Nuwamanya E, Egesi C, Kawuki RS (2021) Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3 11:jkab160
Fernandes SB, Dias KOG, Ferreira DF, Brown PJ (2018) Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor Appl Genet 131:747–755
pubmed: 29218378
doi: 10.1007/s00122-017-3033-y
Frouin J, Labeyrie A, Boisnard A, Sacchi GA, Ahmadi N (2019) Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE 14:e0217516
pubmed: 31194746
pmcid: 6563978
doi: 10.1371/journal.pone.0217516
Gaffney J, Schussler J, Löffler C, Cai W, Paszkiewicz S, Messina C, Groeteke J, Keaschall J, Cooper M (2015) Industry-scale evaluation of maize hybrids selected for increased yield in drought stress conditions of the US corn belt. Crop Sci 55:1608
doi: 10.2135/cropsci2014.09.0654
Gapare W, Liu S, Conaty W, Zhu QH, Gillespie V, Llewellyn D, Stiller W, Wilson I (2018) Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3 8:1721–1732
García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, van Tassell CP (2016) Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA 113:E3995–E4004
pubmed: 27354521
pmcid: 4948329
doi: 10.1073/pnas.1519061113
Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, Mackay IJ, Hickey JM (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 57:2372
doi: 10.2135/cropsci2016.09.0742
Goddard M (2009) Genomic selection: prediction of accuracy and maximization of long term response. Genetica 136:245–257
pubmed: 18704696
doi: 10.1007/s10709-008-9308-0
Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol 14:1099–1105
doi: 10.1111/pbi.12499
Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966
pubmed: 29876589
pmcid: 6096640
doi: 10.1007/s00122-018-3125-3
Grattapaglia D, Resende MDV, Resende M, Sansaloni C, Petroli C, Missiaggia A, Takahashi E, Zamprogno K, Kilian A (2011) Genomic selection for growth traits in Eucalyptus: accuracy within and across breeding populations. BMC Proc 5:1–2
doi: 10.1186/1753-6561-5-S7-A1
Grenier C, Cao TV, Ospina Y, Quintero C, Châtel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS ONE 10:e0136594
pubmed: 26313446
pmcid: 4551487
doi: 10.1371/journal.pone.0136594
Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275
pubmed: 21938474
doi: 10.1007/s00122-011-1702-9
Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:1–7
doi: 10.1186/1471-2156-15-30
Guo T, Yu X, Li X, Zhang H, Zhu C, Flint-Garcia S, McMullen MD, Holland JB, Szalma SJ, Wisser RJ, Yu J (2019) Optimal designs for genomic selection in hybrid crops. Mol Plant 12:390–401
pubmed: 30625380
doi: 10.1016/j.molp.2018.12.022
Haikka H, Knürr T, Manninen O, Pietilä L, Isolahti M, Teperi E, Mäntysaari EA, Strandén I (2020) Genomic prediction of grain yield in commercial Finnish oat (Avena sativa) and barley (Hordeum vulgare) breeding programmes. Plant Breed 139:550–561
doi: 10.1111/pbr.12807
Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM (2010) Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 50:556–566
doi: 10.2135/cropsci2009.04.0198
Hanafi S, Cherkaoui S, Kehel Z, Al-Abdallat A, Tadesse W (2021) Genome-wide association and prediction of male and female floral hybrid potential traits in elite spring bread wheat genotypes. Plants 10:895
pubmed: 33946624
pmcid: 8145198
doi: 10.3390/plants10050895
Hao Y, Wang H, Yang X, Zhang H, He C, Li D, Li H, Wang G, Wang J, Fu J (2019) Genomic prediction using existing historical data contributing to selection in biparental populations: a study of kernel oil in maize. Plant Genome 12:180025
doi: 10.3835/plantgenome2018.05.0025
Hastie T, Tibshirani R, Friedman J (2009) Additive models, trees, and related methods. In: The Elements of Statistical Learning 2009 (pp. 295–336). Springer, New York, NY
He L, Xiao J, Rashid KY, Jia G, Li P, Yao Z, Wang X, Cloutier S, You FM (2019) Evaluation of genomic prediction for pasmo resistance in flax. Int J Mol Sci 20:359
pmcid: 6359301
doi: 10.3390/ijms20020359
Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12
doi: 10.2135/cropsci2008.08.0512
Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690
doi: 10.2135/cropsci2009.11.0662
Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65
doi: 10.3835/plantgenome.2010.12.0029
Herter CP, Ebmeyer E, Kollers S, Korzun V, Miedaner T (2019) An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoriatritici blotch in winter wheat. Theor Appl Genet 132:2425–2437
pubmed: 31144000
doi: 10.1007/s00122-019-03364-7
Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160
doi: 10.2135/cropsci2011.06.0297
Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480
pubmed: 24264761
doi: 10.1007/s00122-013-2231-5
Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213:64
doi: 10.1007/s10681-016-1803-2
Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754
pubmed: 31209375
doi: 10.1038/s41587-019-0152-9
Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231
pubmed: 24442307
doi: 10.1007/BF01245622
Hirsch CN, Springer NM (2018) Weeding out Bad Alleles. Nat Plants 4:193–194
pubmed: 29556084
doi: 10.1038/s41477-018-0133-x
Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3 6:2919–2928
Huang M, Balimponya EG, Mgonja EM, McHale LK, Luzi-Kihupi A, Wang GL, Sneller CH (2019) Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae). Mol Breed 39:1–6
doi: 10.1007/s11032-019-1023-2
Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158
pubmed: 25367380
doi: 10.1007/s00122-014-2418-4
Isik F, Bartholome J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L (2016) Genomic selection in maritime pine. Plant Sci 242:108–119
pubmed: 26566829
doi: 10.1016/j.plantsci.2015.08.006
Jarquin D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Perez P, Calus M, Burgueno J (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607
pubmed: 24337101
doi: 10.1007/s00122-013-2243-1
Jarquin D, De Leon N, Romay C, Bohn M, Buckler ES, Ciampitti I, Edwards J, Ertl D, Flint-Garcia S, Gore MA, Graham C (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Front Genet 11:592769
pubmed: 33763106
pmcid: 7982677
doi: 10.3389/fgene.2020.592769
Jia Z (2017) Controlling the over-fitting of heritability in genomic selection through cross validation. Sci Rep 7:1–9
doi: 10.1038/s41598-017-14070-z
Jighly A, Lin Z, Pembleton LW, Cogan NO, Spangenberg GC, Hayes BJ, Daetwyler HD (2019) Boosting genetic gain in allogamous crops via speed breeding and genomic selection. FrontPlant Sci 10:1364
Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504
pubmed: 23870753
doi: 10.1016/j.tibtech.2013.06.003
Juliana P, Singh RP, Poland J, Mondal S, Crossa J, Montesinos-López OA, Dreisigacker S, Pérez-Rodríguez P, Huerta-Espino J, Crespo-Herrera L, Govindan V (2018) Prospects and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat. Plant Genome 11:1–17
doi: 10.3835/plantgenome2018.03.0017
Juliana P, Montesinos-López OA, Crossa J, Mondal S, Pérez LG, Poland J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Dreisigacker S, Shrestha S (2019) Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor Appl Genet 132:177–194
pubmed: 30341493
doi: 10.1007/s00122-018-3206-3
Katara J, Parameswaran C, Devanna BN, Verma RL, Anilkumar C, Patra BC, Samantaray S (2021) Genomics assisted breeding: The need and current perspective for rice improvement in India. Oryza 58:61–68
doi: 10.35709/ory.2021.58.spl.1
Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80:137–142
pubmed: 9503632
doi: 10.1046/j.1365-2540.1998.00500.x
Krishnappa G, Savadi S, Tyagi BS, Singh SK, Masthigowda MH, Kumar S, Mishra CN, Khan H, Krishnappa G, Govindareddy U, Singh G (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113:1070–1086
pubmed: 33610797
doi: 10.1016/j.ygeno.2021.02.007
Lado B, Vázquez D, Quincke M, Silva P, Aguilar I, Gutiérrez L (2018) Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Theor Appl Genet 131:2719–2731
pubmed: 30232499
pmcid: 6244535
doi: 10.1007/s00122-018-3186-3
Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet 124:743–756
doi: 10.1093/genetics/124.3.743
Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo L, Flament P, Melchinger AE, Menz M, Meyer N, Moreau L (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genet 198:3–16
doi: 10.1534/genetics.114.161943
Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, Michaud R, Claessens A, Brummer EC (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:1–10
doi: 10.3835/plantgenome2014.12.0090
Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R, Patil HT, Mungra KD, Yadav DV, Rathore A, Srivastava RK (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 8:2513–2522
Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages. A review. Crop Pasture Sci 65:1177
doi: 10.1071/CP13363
Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li WX, Zou C, Prasanna BM, Olsen MS (2018) Factors affecting genomic selection revealed by empirical evidence in maize. Crop J 6:341–352
doi: 10.1016/j.cj.2018.03.005
Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D, Wang Y (2020) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18:316
pubmed: 31344311
doi: 10.1111/pbi.13218
Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636
pubmed: 25052155
doi: 10.1016/j.tplants.2014.06.012
Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621
doi: 10.2135/cropsci2011.09.0503
Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161
pubmed: 19841887
doi: 10.1007/s00122-009-1166-3
Lozada DN, Godoy JV, Ward BP, Carter AH (2019) Genomic prediction and indirect selection for grain yield in US pacific northwest winter wheat using spectral reflectance indices from high-throughput phenotyping. Int J Mol Sci 21(1):165
pmcid: 6981971
doi: 10.3390/ijms21010165
Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG, Okechukwu R, Dixon AGO, Kulakow P, Jannink JL (2013) Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection. A Study in Cassava. Crop Sci 53:1312
doi: 10.2135/cropsci2012.11.0653
Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycinemax L.). Mol Breed 36:1–10
doi: 10.1007/s11032-016-0504-9
Martini JW, Wimmer V, Erbe M, Simianer H (2016) Epistasis and covariance: how gene interaction translates into genomic relationship. Theor Appl Genet 129:963–976
pubmed: 26883048
doi: 10.1007/s00122-016-2675-5
Merrick LF, Burke AB, Chen X, Carter AH (2021) Breeding with major and minor genes: genomic selection for quantitative disease resistance. bioRxiv
Messina CD, Technow F, Tang T, Totir R, Gho C, Cooper M (2018) Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP). Eur J Agron 100:151–162
doi: 10.1016/j.eja.2018.01.007
Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157:1819–1829
doi: 10.1093/genetics/157.4.1819
Meuwissen T, Hayes B, Goddard M (2016) Genomic selection: A paradigm shift in animal breeding. Anim Front 6:6–14
doi: 10.2527/af.2016-0002
Michel S, Wagner C, Nosenko T, Steiner B, Samad-Zamini M, Buerstmayr M, Mayer K, Buerstmayr H (2021) Merging genomics and transcriptomics for predicting Fusarium head blight resistance in wheat. Genes 12(1):114
pubmed: 33477759
pmcid: 7832326
doi: 10.3390/genes12010114
Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet 128:2471–2481
pubmed: 26350496
doi: 10.1007/s00122-015-2602-1
Muhammed Azharudheen TP, Molla KA, Anilkumar C, Sah RP (2022) Advanced Technologies for Climate-Smart Breeding. In: Bhattacharyya P, Chakraborty K, Molla KA, Poonam A, Bhaduri, D, Sah RP, Paul S, Hanjagi PS, Basana-Gowda G, Swain P (Eds.) Climate Resilient Technologies for Rice based Production Systems in Eastern India. ICAR-National Rice Research Institute, Cuttack, Odisha, India, pp 408.
Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316
pubmed: 22645117
pmcid: 3478044
doi: 10.1093/aob/mcs109
Nsibi M, Gouble B, Bureau S, Flutre T, Sauvage C, Audergon JM, Regnard JL (2020) Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3 10:4513–4529
Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128:41–53
pubmed: 25341369
doi: 10.1007/s00122-014-2411-y
Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T, Iwata H (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817
pubmed: 26791836
doi: 10.1007/s00122-016-2667-5
Ornella L, Singh S, Perez P, Burgue J, Singh R (2012) Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 5:136–148
doi: 10.3835/plantgenome2012.07.0017
Pardey PG, Beddow JM, Hurley TM, Beatty TK, Eidman VR (2014) The International agricultural prospects model: assessing consumption and production futures through 2050 (version 2.1)
Pandey MK, Agarwal G, Rathore A, Janila P, Upadhyaya HD, Varshney RK (2015) Development of high density 60K “Axiom_Arachis” SNP Chip and optimization of genomic selection model for enhancing breeding efficiency in peanut. Proceedings of 8th international conference of the Peanut Research Community on “Advances in Arachis through Genomics and Biotechnology”, Brisbane, 5–9
Pérez-Cabal M, Vazquez AI, Gianola D, Rosa GJ, Weigel KA (2012) Accuracy of genome-enabled prediction in a dairy cattle population using different cross-validation layouts. Front Genet 3:27
pubmed: 22403583
pmcid: 3288819
doi: 10.3389/fgene.2012.00027
Pierre SC, Burgueño J, Crossa J, Dávila GF, López PF, Moya ES, Moreno JI, Muela VH, Villa VZ, Vikram P, Mathews K (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6:1–11
Poland JA, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113
Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98
pubmed: 27491433
doi: 10.1146/annurev-phyto-080615-100056
Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Lu F (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959–963
pubmed: 28416819
doi: 10.1038/ng.3845
Ravelombola W, Qin J, Shi A, Song Q, Yuan J, Wang F, Chen P, Yan L, Feng Y, Zhao T, Meng Y (2021) Genome-wide association study and genomic selection for yield and related traits in soybean. PLoS ONE 16:e0255761
pubmed: 34388193
pmcid: 8362977
doi: 10.1371/journal.pone.0255761
Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128
pubmed: 22309312
doi: 10.1111/j.1469-8137.2011.04038.x
Resende MFR, Munoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2012b) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624
pubmed: 21973055
doi: 10.1111/j.1469-8137.2011.03895.x
Rice B, Lipka AE (2019) Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. Plant Genome 12(1):180052
doi: 10.3835/plantgenome2018.07.0052
Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848
pubmed: 23982591
doi: 10.1007/s00122-013-2175-9
Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genome-Enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666
pubmed: 27920780
pmcid: 5118446
doi: 10.3389/fpls.2016.01666
Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51
doi: 10.3835/plantgenome2012.02.0001
Rutkoski JE (2019) Estimation of realized rates of genetic gain and indicators for breeding program assessment. Crop Sci 59:981–993
doi: 10.2135/cropsci2018.09.0537
Sallam AH, Endelman JB, Jannink JL, Smith KP (2015) Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant Genome 8:1–15
doi: 10.3835/plantgenome2014.05.0020
Sandhu K, Patil SS, Pumphrey M, Carter A (2021a) Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 14(3):e20119
pubmed: 34482627
doi: 10.1002/tpg2.20119
Sandhu KS, Lozada DN, Zhang Z, Pumphrey MO, Carter AH (2021b) Deep learning for predicting complex traits in spring wheat breeding program. Front Plant Sci 11:613325
pubmed: 33469463
pmcid: 7813801
doi: 10.3389/fpls.2020.613325
Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223
pubmed: 16882088
doi: 10.1111/j.1439-0388.2006.00595.x
Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A, Scholten S, Melchinger AE (2018) Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genet 208:1373–1385
doi: 10.1534/genetics.117.300374
Schulz-Streeck T, Ogutu JO, Gordillo A, Karaman Z, Knaak C, Piepho HP (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538
doi: 10.1111/pbr.12105
Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550
pubmed: 28484471
pmcid: 5399777
doi: 10.3389/fpls.2017.00550
Smith JS, Hussain T, Jones ES, Graham G, Podlich D, Wall S, Williams M (2008) Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed 22:51–59
doi: 10.1007/s11032-007-9155-1
Song J, Carver BF, Powers C, Yan L, Klápště J, El-Kassaby YA, Chen C (2017) Practical application of genomic selection in a doubled-haploid winter wheat breeding program. Mol Breed 37(10):1–5
doi: 10.1007/s11032-017-0715-8
Sorrells ME (2015) Genomic selection in plants: empirical results and implications for wheat breeding. In Advances in wheat genetics: from genome to field 2015 (pp. 401–409). Springer, Tokyo.
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J-L, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa). Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics 11:e1004982
Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116(4):395–408
pubmed: 26860200
pmcid: 4806696
doi: 10.1038/hdy.2015.113
Spindel J, Iwata H (2018) Genomic Selection in Rice Breeding Sasaki T, Ashikari M (eds.), Rice Genomics, Genetics and Breeding. Springer. 473–496
Stewart-Brown BB, Song Q, Vaughn JN, Li Z (2019) Genomic selection for yield and seed composition traits within an applied soybean breeding program. G3-GENE GENOM GENET 9:2253–2265
Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome 6(1):plantgenome
Sun J, Poland JA, Mondal S, Crossa J, Juliana P, Singh RP, Rutkoski JE, Jannink JL, Crespo-Herrera L, Velu G, Huerta-Espino J (2019) High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theor Appl Genet 132(6):1705–1720
pubmed: 30778634
doi: 10.1007/s00122-019-03309-0
Tessema BB, Liu H, Sørensen AC, Andersen JR, Jensen J (2020) Strategies using genomic selection to increase genetic gain in breeding programs for wheat. Front Genet 11:578123
pubmed: 33343626
pmcid: 7748061
doi: 10.3389/fgene.2020.578123
Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of genomic selection models to predict flowering time and spike grain number in two hexaploid wheat doubled haploid populations. G3 5(10):1991–1998
Tripodi P, Massa D, Venezia A, Cardi T (2018) Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agron 8:57
doi: 10.3390/agronomy8040057
Tsai HY, Cericola F, Edriss V, Andersen JR, Orabi J, Jensen JD, Jahoor A, Janss L, Jensen J (2020) Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. PLoS ONE 15:e0232665
pubmed: 32401769
pmcid: 7219756
doi: 10.1371/journal.pone.0232665
Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976
pubmed: 28922347
pmcid: 6871012
doi: 10.1038/nbt.3943
Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Sohu VS, Mavi GS (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605
pubmed: 27170319
doi: 10.1007/s00122-016-2726-y
Verges VL, Lyerly J, Dong Y, Van Sanford DA (2020) Training population design with the use of regional Fusarium head blight nurseries to predict independent breeding lines for FHB traits. Front Plant Sci 11:1083
pubmed: 32765564
pmcid: 7381120
doi: 10.3389/fpls.2020.01083
Verma RL, Katara JL, Anilkumar C, Devanna BN, Parameswaran C, Dash B, Samantaray S (2021) Advanced breeding strategies for rice improvement. In: Nayak AK, Samantaray S, Baig MJ, Tripathi R, Kumar U, Devanna BN, Maiti D Rice Research: Recent Advances and Perspective. ICAR-National Rice Research Institute, Cuttack, Odisha, India
Voss-Fels KP, Herzog E, Dreisigacker S, Sukumaran S, Watson A, Frisch M, Hayes B, Hickey LT (2019a) “SpeedGS” to accelerate genetic gain in spring wheat. In: Applications of genetic and genomic research in cereals. (pp. 303–327). Woodhead Publishing
Voss-Fels KP, Cooper M, Hayes BJ (2019b) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686
pubmed: 30569365
doi: 10.1007/s00122-018-3270-8
Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom 15:556
doi: 10.1186/1471-2164-15-556
Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2017) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118:302–310
pubmed: 27649618
doi: 10.1038/hdy.2016.87
Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: Current status and prospects. Crop J 6:330–340
doi: 10.1016/j.cj.2018.03.001
Wang S, Wei J, Li R, Qu H, Chater JM, Ma R, Li Y, Xie W, Jia Z (2019) Identification of optimal prediction models using multi-omic data for selecting hybrid rice. Heredity 123(3):395–406
pubmed: 30911139
pmcid: 6781126
doi: 10.1038/s41437-019-0210-6
Wang N, Wang H, Zhang A, Liu Y, Yu D, Hao Z, Ilut D, Glaubitz JC, Gao Y, Jones E, Olsen M (2020) Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing. Theor Appl Genet 133(10):2869–2879
pubmed: 32607592
pmcid: 7782462
doi: 10.1007/s00122-020-03638-5
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, AsyrafHatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29
pubmed: 29292376
doi: 10.1038/s41477-017-0083-8
Watson A, Christopher HLT, J, Rutkoski J, Poland J, Hayes BJ, (2019) Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci 59:1945–1959
doi: 10.2135/cropsci2018.12.0757
Westhues M, Schrag TA, Heuer C, Thaller G, Utz HF, Schipprack W, Thiemann A, Seifert F, Ehret A, Schlereth A, Stitt M (2017) Omics-based hybrid prediction in maize. Theor Appl Genet 130(9):1927–1939
pubmed: 28647896
doi: 10.1007/s00122-017-2934-0
Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, Lozano R, Del Carpio DP, Ramu P, Jannink JL (2016) Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9:1–13
doi: 10.3835/plantgenome2015.11.0118
Wong CK, Bernardo R (2008) Genome wide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824
pubmed: 18219476
doi: 10.1007/s00122-008-0715-5
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666
pubmed: 28830098
doi: 10.1093/jxb/erx135
Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005
pubmed: 33404534
doi: 10.1016/j.xplc.2019.100005
Xu Y (2010) Molecular Plant Breeding (Wallingford, UK: CABI Publishing)
Xu Y (2012) Environmental assaying or e-typing as a key component for integrated plant breeding platform. In: Marker-Assisted Selection Workshop, 6th International Crop Science Congress, August 6–10, 2012, Bento Goncalves, RS, Brazil
Yabe S, Iwata H, Jannink JL (2017) A simple package to script and simulate breeding schemes: the breeding scheme language. Crop Sci 57:1347–1354
doi: 10.2135/cropsci2016.06.0538
Yamamoto E, Kataoka S, Shirasawa K, Noguchi Y, Isobe S (2021) Genomic Selection for F
doi: 10.3389/fpls.2021.645111
Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J (2017) Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet 13:e1007019
pubmed: 28953891
pmcid: 5633198
doi: 10.1371/journal.pgen.1007019
Zhang X, Sallam A, Gao L, Kantarski T, Poland JA, DeHaan LR, Wyse DL, Anderson JA (2016) Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome 9:1–8
doi: 10.3835/plantgenome2015.07.0059
Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multiparental tropical maize population. G3 Gene Genom Genet 7:2315–2326
Zhang A, Pérez-Rodríguez P, San Vicente F, Palacios-Rojas N, Dhliwayo T, Liu Y, Cui Z, Guan Y, Wang H, Zheng H, Olsen M (2021) Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. Crop J. https://doi.org/10.1016/j.cj.2021.04.007
doi: 10.1016/j.cj.2021.04.007
Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776
pubmed: 22075809
doi: 10.1007/s00122-011-1745-y