Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 09 2022
Historique:
received: 08 12 2021
accepted: 26 08 2022
entrez: 23 9 2022
pubmed: 24 9 2022
medline: 28 9 2022
Statut: epublish

Résumé

Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases.

Identifiants

pubmed: 36151083
doi: 10.1038/s41467-022-33079-1
pii: 10.1038/s41467-022-33079-1
pmc: PMC9508253
doi:

Substances chimiques

C9orf72 Protein 0
Eukaryotic Initiation Factor-4E 0
Eukaryotic Initiation Factor-4F 0
Ribonucleoproteins 0
RNA 63231-63-0
TOR Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5584

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS128494
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS074324
Pays : United States
Organisme : NIH HHS
ID : S10 OD021844
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS110098
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS089616
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).
pubmed: 27289443 pmcid: 4993645 doi: 10.1016/j.tcb.2016.05.004
Panas, M. D., Ivanov, P. & Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313–323 (2016).
pubmed: 27821493 pmcid: 5100297 doi: 10.1083/jcb.201609081
Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e328 (2020).
pubmed: 32302571 pmcid: 7448383 doi: 10.1016/j.cell.2020.03.046
Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019).
pubmed: 31582840 pmcid: 6986315 doi: 10.1038/s41583-019-0222-5
van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).
pubmed: 28552366 doi: 10.1016/S0140-6736(17)31287-4
Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).
pubmed: 23629963 pmcid: 3639398 doi: 10.1083/jcb.201302044
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).
pubmed: 17023659 doi: 10.1126/science.1134108
Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e809 (2017).
pubmed: 28817800 pmcid: 5576574 doi: 10.1016/j.neuron.2017.07.025
Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).
pubmed: 23455423 pmcid: 3756911 doi: 10.1038/nature11922
Malik, A. M. & Barmada, S. J. Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight 6, https://doi.org/10.1172/jci.insight.143948 (2021).
Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).
pubmed: 28405022 pmcid: 5642042 doi: 10.1038/nature22038
Gal, J. et al. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathologica 132, 563–576 (2016).
pubmed: 27481264 pmcid: 5023729 doi: 10.1007/s00401-016-1601-x
Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).
pubmed: 23791177 pmcid: 3760148 doi: 10.1016/j.cell.2013.05.037
Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e717 (2016).
pubmed: 27768896 pmcid: 5079111 doi: 10.1016/j.cell.2016.10.002
Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e966 (2018).
pubmed: 29526694 pmcid: 6181577 doi: 10.1016/j.molcel.2018.02.004
Chitiprolu, M. et al. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9, 2794 (2018).
pubmed: 30022074 pmcid: 6052026 doi: 10.1038/s41467-018-05273-7
Zhang, P. et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8, https://doi.org/10.7554/eLife.39578 (2019).
Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta. Neuropathologica 130, 633–642 (2015).
pubmed: 26450683 pmcid: 4612323 doi: 10.1007/s00401-015-1487-z
Kim, H. J. et al. Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. 46, 152–160 (2014).
pubmed: 24336168 doi: 10.1038/ng.2853
Apicco, D. J. et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 21, 72–80 (2018).
pubmed: 29273772 doi: 10.1038/s41593-017-0022-z
Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819.e811 (2019).
pubmed: 31272829 pmcid: 6728177 doi: 10.1016/j.neuron.2019.05.048
Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).
pubmed: 15967811 pmcid: 2171635 doi: 10.1083/jcb.200502088
Stoecklin, G. et al. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004).
pubmed: 15014438 pmcid: 381421 doi: 10.1038/sj.emboj.7600163
Kedersha, N. et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13, 195–210 (2002).
pubmed: 11809833 pmcid: 65082 doi: 10.1091/mbc.01-05-0221
Amen, T. & Kaganovich, D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep. 35, 109237 (2021).
pubmed: 34133922 pmcid: 8220302 doi: 10.1016/j.celrep.2021.109237
Reineke, L. C., Cheema, S. A., Dubrulle, J. & Neilson, J. R. Chronic starvation induces noncanonical pro-death stress granules. J. Cell Sci. 131, https://doi.org/10.1242/jcs.220244 (2018).
Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).
pubmed: 26777405 pmcid: 4733397 doi: 10.1016/j.cell.2015.12.038
Ames, A. CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–68 (2000).
pubmed: 11086186 doi: 10.1016/S0165-0173(00)00038-2
Yellen, G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 217, 2235–2246 (2018).
pubmed: 29752396 pmcid: 6028533 doi: 10.1083/jcb.201803152
Cunnane, S. C. et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020).
pubmed: 32709961 pmcid: 7948516 doi: 10.1038/s41573-020-0072-x
Tefera, T. W., Steyn, F. J., Ngo, S. T. & Borges, K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target. Cell Biosci. 11, 14 (2021).
pubmed: 33431046 pmcid: 7798275 doi: 10.1186/s13578-020-00511-2
Peet, B. T., Spina, S., Mundada, N. & La Joie, R. Neuroimaging in frontotemporal dementia: heterogeneity and relationships with underlying neuropathology. Neurotherapeutics 18, 728–752 (2021).
pubmed: 34389969 pmcid: 8423978 doi: 10.1007/s13311-021-01101-x
De Vocht, J. et al. Use of multimodal imaging and clinical biomarkers in presymptomatic carriers of C9orf72 repeat expansion. JAMA Neurol. 1008–1017 (2020).
Dodge, J. C. et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. USA 110, 10812–10817 (2013).
pubmed: 23754387 pmcid: 3696768 doi: 10.1073/pnas.1308421110
Li, C. et al. Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front. Mol. Neurosci. 12, 114 (2019).
pubmed: 31133799 pmcid: 6514045 doi: 10.3389/fnmol.2019.00114
Tafuri, F., Ronchi, D., Magri, F., Comi, G. P. & Corti, S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front. Cell. Neurosci. 9, 336 (2015).
pubmed: 26379505 pmcid: 4548205 doi: 10.3389/fncel.2015.00336
Genin, E. C. et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol. Med. 8, 58–72 (2016).
pubmed: 26666268 doi: 10.15252/emmm.201505496
Wang, T. et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab. 33, 531–546.e539 (2021).
pubmed: 33545050 pmcid: 8579819 doi: 10.1016/j.cmet.2021.01.005
Choi, S. Y. et al. C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci. 22, 851–862 (2019).
pubmed: 31086314 pmcid: 6800116 doi: 10.1038/s41593-019-0397-0
Deng, J. et al. FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc. Natl. Acad. Sci. USA 115, E9678–E9686 (2018).
pubmed: 30249657 pmcid: 6187197 doi: 10.1073/pnas.1806655115
Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).
pubmed: 27348499 pmcid: 4974139 doi: 10.1038/nm.4130
Wills, A.-M. et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383, 2065–2072 (2014).
pubmed: 24582471 pmcid: 4176708 doi: 10.1016/S0140-6736(14)60222-1
Fujimura, K., Sasaki, A. T. & Anderson, P. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res. 40, 8099–8110 (2012).
pubmed: 22718973 pmcid: 3439927 doi: 10.1093/nar/gks566
Henke, B. R. & Sparks, S. M. Glycogen phosphorylase inhibitors. Mini Rev. Med. Chem. 6, 845–857 (2006).
pubmed: 16918491 doi: 10.2174/138955706777934991
Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).
doi: 10.1038/nrd3504
Chen, W. & Gueron, M. The inhibition of bovine heart hexokinase by 2-deoxy-D-glucose-6-phosphate: characterization by 31P NMR and metabolic implications. Biochimie 74, 867–873 (1992).
pubmed: 1467345 doi: 10.1016/0300-9084(92)90070-U
Kohler, E., Barrach, H. & Neubert, D. Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP. FEBS Lett. 6, 225–228 (1970).
pubmed: 11947380 doi: 10.1016/0014-5793(70)80063-1
Chen, J. et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30, 4297–4306 (2011).
pubmed: 21516121 doi: 10.1038/onc.2011.137
Tourriere, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).
pubmed: 12642610 pmcid: 2173781 doi: 10.1083/jcb.200212128
Wheeler, J. R., Jain, S., Khong, A. & Parker, R. Isolation of yeast and mammalian stress granule cores. Methods 126, 12–17 (2017).
pubmed: 28457979 pmcid: 5924690 doi: 10.1016/j.ymeth.2017.04.020
Gruetter, R. et al. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc. Natl. Acad. Sci. USA 89, 1109–1112 (1992).
pubmed: 1736294 pmcid: 48395 doi: 10.1073/pnas.89.3.1109
Silver, I. A. & Erecinska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 5068–5076 (1994).
pubmed: 8046468 pmcid: 6577171 doi: 10.1523/JNEUROSCI.14-08-05068.1994
Languren, G., Montiel, T., Julio-Amilpas, A. & Massieu, L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochemistry Int. 63, 331–343 (2013).
doi: 10.1016/j.neuint.2013.06.018
Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).
pubmed: 32943735 pmcid: 8080614 doi: 10.1038/s12276-020-00504-8
Yang, L., Venneti, S. & Nagrath, D. Glutaminolysis: a hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017).
pubmed: 28301735 doi: 10.1146/annurev-bioeng-071516-044546
Rafalski, V. A., Mancini, E. & Brunet, A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 125, 5597–5608 (2012).
pubmed: 23420198 pmcid: 3575699 doi: 10.1242/jcs.114827
Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190–201 (2016).
pubmed: 26616193 doi: 10.1016/j.tcb.2015.10.013
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).
pubmed: 22500797 pmcid: 3331679 doi: 10.1016/j.cell.2012.03.017
Sato, T., Nakashima, A., Guo, L., Coffman, K. & Tamanoi, F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29, 2746–2752 (2010).
pubmed: 20190810 pmcid: 2953941 doi: 10.1038/onc.2010.28
Tauber, D. et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180, 411–426.e416 (2020).
pubmed: 31928844 pmcid: 7194247 doi: 10.1016/j.cell.2019.12.031
Mazroui, R. et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol. Biol. Cell 17, 4212–4219 (2006).
pubmed: 16870703 pmcid: 1635342 doi: 10.1091/mbc.e06-04-0318
Kedersha, N. et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845–860 (2016).
pubmed: 27022092 pmcid: 4810302 doi: 10.1083/jcb.201508028
Mehta, A. R. et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathologica 141, 257–279 (2021).
pubmed: 33398403 pmcid: 7847443 doi: 10.1007/s00401-020-02252-5
Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927–937 (2017).
pubmed: 28096475 pmcid: 5358336
Advani, V. M. & Ivanov, P. Stress granule subtypes: an emerging link to neurodegeneration. Cell. Mol. Life Sci. 77, 4827–4845 (2020).
pubmed: 32500266 pmcid: 7668291 doi: 10.1007/s00018-020-03565-0
Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e513 (2018).
pubmed: 29373831 pmcid: 5969999 doi: 10.1016/j.cell.2017.12.032
Emara, M. M. et al. Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem. Biophys. Res. Commun. 423, 763–769 (2012).
pubmed: 22705549 pmcid: 3399031 doi: 10.1016/j.bbrc.2012.06.033
Hofmann, S., Kedersha, N., Anderson, P. & Ivanov, P. Molecular mechanisms of stress granule assembly and disassembly. Biochimica et. Biophysica Acta Mol. Cell Res. 1868, 118876 (2021).
doi: 10.1016/j.bbamcr.2020.118876
Buchan, J. R., Muhlrad, D. & Parker, R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183, 441–455 (2008).
pubmed: 18981231 pmcid: 2575786 doi: 10.1083/jcb.200807043
Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).
pubmed: 11691993 doi: 10.1126/science.1063518
Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).
pubmed: 20444419 pmcid: 3081779 doi: 10.1016/j.cmet.2010.03.014
Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).
Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).
pubmed: 24529383 pmcid: 3955179 doi: 10.1016/j.cell.2013.12.042
Hall, C. N., Klein-Flugge, M. C., Howarth, C. & Attwell, D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012).
pubmed: 22745494 pmcid: 3390246 doi: 10.1523/JNEUROSCI.0026-12.2012
TeSlaa, T. et al. The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33, 367–378.e365 (2021).
pubmed: 33472024 pmcid: 8088818 doi: 10.1016/j.cmet.2020.12.020
Schulz, A. et al. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. J. Cell Biol. 219, https://doi.org/10.1083/jcb.201807127 (2020).
Duran, J. et al. Lack of neuronal glycogen impairs memory formation and learning-dependent synaptic plasticity in mice. Front. Cell. Neurosci. 13, 374 (2019).
pubmed: 31456667 pmcid: 6700221 doi: 10.3389/fncel.2019.00374
Rai, A. et al. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis. 9, 201 (2018).
pubmed: 29422655 pmcid: 5833817 doi: 10.1038/s41419-017-0190-5
Saez, I. et al. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J. Cereb. Blood Flow. Metab. 34, 945–955 (2014).
pubmed: 24569689 pmcid: 4050236 doi: 10.1038/jcbfm.2014.33
Belanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).
pubmed: 22152301 doi: 10.1016/j.cmet.2011.08.016
Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353–360.e353 (2017).
pubmed: 28768174 pmcid: 5573225 doi: 10.1016/j.cmet.2017.07.010
Mann, D. M., Sumpter, P. Q., Davies, C. A. & Yates, P. O. Glycogen accumulations in the cerebral cortex in Alzheimer’s disease. Acta Neuropathologica 73, 181–184 (1987).
pubmed: 3037842 doi: 10.1007/BF00693786
Gertz, H. J., Cervos-Navarro, J., Frydl, V. & Schultz, F. Glycogen accumulation of the aging human brain. Mechanisms Ageing Dev. 31, 25–35 (1985).
doi: 10.1016/0047-6374(85)90024-7
Duran, J., Gruart, A., Garcia-Rocha, M., Delgado-Garcia, J. M. & Guinovart, J. J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 23, 3147–3156 (2014).
pubmed: 24452334 doi: 10.1093/hmg/ddu024
Cai, R. et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 129, 4539–4549 (2019).
pubmed: 31524631 pmcid: 6763248 doi: 10.1172/JCI129987
Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 8, https://doi.org/10.7554/eLife.45114 (2019).
Besson, M. T., Alegria, K., Garrido-Gerter, P., Barros, L. F. & Lievens, J. C. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS ONE 10, e0118765 (2015).
pubmed: 25761110 pmcid: 4356621 doi: 10.1371/journal.pone.0118765
Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 79, 132933 (2017).
Takanaga, H. & Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. FASEB J. 24, 2849–2858 (2010).
pubmed: 20354141 pmcid: 3230527 doi: 10.1096/fj.09-146472
Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).
pubmed: 19657394 pmcid: 2717805 doi: 10.1371/journal.pone.0006529
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).
pubmed: 26816379 pmcid: 4852862 doi: 10.1126/science.aab4138
Ugolino, J. et al. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet. 12, e1006443 (2016).
pubmed: 27875531 pmcid: 5119725 doi: 10.1371/journal.pgen.1006443
Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).
pubmed: 11430820 doi: 10.1016/S1097-2765(01)00265-9
Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971.e917 (2018).
pubmed: 29628143 pmcid: 6083872 doi: 10.1016/j.cell.2018.03.025
DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).
pubmed: 21944778 pmcid: 3202986 doi: 10.1016/j.neuron.2011.09.011
Du, Z. W. et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626 (2015).
pubmed: 25806427 doi: 10.1038/ncomms7626
Yoon, S. J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).
pubmed: 30573846 doi: 10.1038/s41592-018-0255-0
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425 pmcid: 4900885 doi: 10.1016/j.cell.2016.04.032
Liu, H. et al. A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation. J. Am. Chem. Soc. 143, 7368–7379 (2021).
pubmed: 33855846 pmcid: 8610145 doi: 10.1021/jacs.1c00131
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778 pmcid: 8454663
Schaukowitch, K., Joo, J. Y. & Kim, T. K. UV-RNA immunoprecipitation (UV-RIP) protocol in neurons. Methods Mol. Biol. 1468, 33–38 (2017).
pubmed: 27662868 doi: 10.1007/978-1-4939-4035-6_4
Liu, Y. et al. A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes Dev. 32, 1380–1397 (2018).
pubmed: 30366907 pmcid: 6217731 doi: 10.1101/gad.315564.118
Chida, J. & Kido, H. Extraction and quantification of adenosine triphosphate in mammalian tissues and cells. Methods Mol. Biol. 1098, 21–32 (2014).
pubmed: 24166365 doi: 10.1007/978-1-62703-718-1_2

Auteurs

Tao Wang (T)

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. twangsh@hotmail.com.
Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. twangsh@hotmail.com.

Xibin Tian (X)

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.

Han Byeol Kim (HB)

Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.

Yura Jang (Y)

Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.

Zhiyuan Huang (Z)

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.

Chan Hyun Na (CH)

Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.

Jiou Wang (J)

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. jiouw@jhmi.edu.
Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA. jiouw@jhmi.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH