Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules.
Amyotrophic Lateral Sclerosis
/ metabolism
C9orf72 Protein
/ genetics
Cytoplasmic Granules
/ metabolism
Cytoplasmic Ribonucleoprotein Granules
Eukaryotic Initiation Factor-4E
/ metabolism
Eukaryotic Initiation Factor-4F
/ metabolism
Frontotemporal Dementia
/ genetics
Humans
RNA
/ metabolism
Ribonucleoproteins
/ genetics
Stress, Physiological
/ physiology
TOR Serine-Threonine Kinases
/ genetics
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 09 2022
23 09 2022
Historique:
received:
08
12
2021
accepted:
26
08
2022
entrez:
23
9
2022
pubmed:
24
9
2022
medline:
28
9
2022
Statut:
epublish
Résumé
Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases.
Identifiants
pubmed: 36151083
doi: 10.1038/s41467-022-33079-1
pii: 10.1038/s41467-022-33079-1
pmc: PMC9508253
doi:
Substances chimiques
C9orf72 Protein
0
Eukaryotic Initiation Factor-4E
0
Eukaryotic Initiation Factor-4F
0
Ribonucleoproteins
0
RNA
63231-63-0
TOR Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5584Subventions
Organisme : NINDS NIH HHS
ID : R01 NS128494
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS074324
Pays : United States
Organisme : NIH HHS
ID : S10 OD021844
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS110098
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS089616
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081
pmcid: 7434221
doi: 10.1038/nrm.2017.7
Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).
pubmed: 27289443
pmcid: 4993645
doi: 10.1016/j.tcb.2016.05.004
Panas, M. D., Ivanov, P. & Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313–323 (2016).
pubmed: 27821493
pmcid: 5100297
doi: 10.1083/jcb.201609081
Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e328 (2020).
pubmed: 32302571
pmcid: 7448383
doi: 10.1016/j.cell.2020.03.046
Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019).
pubmed: 31582840
pmcid: 6986315
doi: 10.1038/s41583-019-0222-5
van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).
pubmed: 28552366
doi: 10.1016/S0140-6736(17)31287-4
Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).
pubmed: 23629963
pmcid: 3639398
doi: 10.1083/jcb.201302044
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).
pubmed: 17023659
doi: 10.1126/science.1134108
Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e809 (2017).
pubmed: 28817800
pmcid: 5576574
doi: 10.1016/j.neuron.2017.07.025
Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).
pubmed: 23455423
pmcid: 3756911
doi: 10.1038/nature11922
Malik, A. M. & Barmada, S. J. Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight 6, https://doi.org/10.1172/jci.insight.143948 (2021).
Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017).
pubmed: 28405022
pmcid: 5642042
doi: 10.1038/nature22038
Gal, J. et al. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathologica 132, 563–576 (2016).
pubmed: 27481264
pmcid: 5023729
doi: 10.1007/s00401-016-1601-x
Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).
pubmed: 23791177
pmcid: 3760148
doi: 10.1016/j.cell.2013.05.037
Lee, K. H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e717 (2016).
pubmed: 27768896
pmcid: 5079111
doi: 10.1016/j.cell.2016.10.002
Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e966 (2018).
pubmed: 29526694
pmcid: 6181577
doi: 10.1016/j.molcel.2018.02.004
Chitiprolu, M. et al. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9, 2794 (2018).
pubmed: 30022074
pmcid: 6052026
doi: 10.1038/s41467-018-05273-7
Zhang, P. et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8, https://doi.org/10.7554/eLife.39578 (2019).
Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta. Neuropathologica 130, 633–642 (2015).
pubmed: 26450683
pmcid: 4612323
doi: 10.1007/s00401-015-1487-z
Kim, H. J. et al. Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. 46, 152–160 (2014).
pubmed: 24336168
doi: 10.1038/ng.2853
Apicco, D. J. et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 21, 72–80 (2018).
pubmed: 29273772
doi: 10.1038/s41593-017-0022-z
Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819.e811 (2019).
pubmed: 31272829
pmcid: 6728177
doi: 10.1016/j.neuron.2019.05.048
Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).
pubmed: 15967811
pmcid: 2171635
doi: 10.1083/jcb.200502088
Stoecklin, G. et al. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004).
pubmed: 15014438
pmcid: 381421
doi: 10.1038/sj.emboj.7600163
Kedersha, N. et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13, 195–210 (2002).
pubmed: 11809833
pmcid: 65082
doi: 10.1091/mbc.01-05-0221
Amen, T. & Kaganovich, D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep. 35, 109237 (2021).
pubmed: 34133922
pmcid: 8220302
doi: 10.1016/j.celrep.2021.109237
Reineke, L. C., Cheema, S. A., Dubrulle, J. & Neilson, J. R. Chronic starvation induces noncanonical pro-death stress granules. J. Cell Sci. 131, https://doi.org/10.1242/jcs.220244 (2018).
Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).
pubmed: 26777405
pmcid: 4733397
doi: 10.1016/j.cell.2015.12.038
Ames, A. CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–68 (2000).
pubmed: 11086186
doi: 10.1016/S0165-0173(00)00038-2
Yellen, G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 217, 2235–2246 (2018).
pubmed: 29752396
pmcid: 6028533
doi: 10.1083/jcb.201803152
Cunnane, S. C. et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020).
pubmed: 32709961
pmcid: 7948516
doi: 10.1038/s41573-020-0072-x
Tefera, T. W., Steyn, F. J., Ngo, S. T. & Borges, K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target. Cell Biosci. 11, 14 (2021).
pubmed: 33431046
pmcid: 7798275
doi: 10.1186/s13578-020-00511-2
Peet, B. T., Spina, S., Mundada, N. & La Joie, R. Neuroimaging in frontotemporal dementia: heterogeneity and relationships with underlying neuropathology. Neurotherapeutics 18, 728–752 (2021).
pubmed: 34389969
pmcid: 8423978
doi: 10.1007/s13311-021-01101-x
De Vocht, J. et al. Use of multimodal imaging and clinical biomarkers in presymptomatic carriers of C9orf72 repeat expansion. JAMA Neurol. 1008–1017 (2020).
Dodge, J. C. et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. USA 110, 10812–10817 (2013).
pubmed: 23754387
pmcid: 3696768
doi: 10.1073/pnas.1308421110
Li, C. et al. Decreased glycogenolysis by miR-338-3p promotes regional glycogen accumulation within the spinal cord of amyotrophic lateral sclerosis mice. Front. Mol. Neurosci. 12, 114 (2019).
pubmed: 31133799
pmcid: 6514045
doi: 10.3389/fnmol.2019.00114
Tafuri, F., Ronchi, D., Magri, F., Comi, G. P. & Corti, S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front. Cell. Neurosci. 9, 336 (2015).
pubmed: 26379505
pmcid: 4548205
doi: 10.3389/fncel.2015.00336
Genin, E. C. et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol. Med. 8, 58–72 (2016).
pubmed: 26666268
doi: 10.15252/emmm.201505496
Wang, T. et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab. 33, 531–546.e539 (2021).
pubmed: 33545050
pmcid: 8579819
doi: 10.1016/j.cmet.2021.01.005
Choi, S. Y. et al. C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci. 22, 851–862 (2019).
pubmed: 31086314
pmcid: 6800116
doi: 10.1038/s41593-019-0397-0
Deng, J. et al. FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc. Natl. Acad. Sci. USA 115, E9678–E9686 (2018).
pubmed: 30249657
pmcid: 6187197
doi: 10.1073/pnas.1806655115
Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).
pubmed: 27348499
pmcid: 4974139
doi: 10.1038/nm.4130
Wills, A.-M. et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383, 2065–2072 (2014).
pubmed: 24582471
pmcid: 4176708
doi: 10.1016/S0140-6736(14)60222-1
Fujimura, K., Sasaki, A. T. & Anderson, P. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res. 40, 8099–8110 (2012).
pubmed: 22718973
pmcid: 3439927
doi: 10.1093/nar/gks566
Henke, B. R. & Sparks, S. M. Glycogen phosphorylase inhibitors. Mini Rev. Med. Chem. 6, 845–857 (2006).
pubmed: 16918491
doi: 10.2174/138955706777934991
Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).
doi: 10.1038/nrd3504
Chen, W. & Gueron, M. The inhibition of bovine heart hexokinase by 2-deoxy-D-glucose-6-phosphate: characterization by 31P NMR and metabolic implications. Biochimie 74, 867–873 (1992).
pubmed: 1467345
doi: 10.1016/0300-9084(92)90070-U
Kohler, E., Barrach, H. & Neubert, D. Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP. FEBS Lett. 6, 225–228 (1970).
pubmed: 11947380
doi: 10.1016/0014-5793(70)80063-1
Chen, J. et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 30, 4297–4306 (2011).
pubmed: 21516121
doi: 10.1038/onc.2011.137
Tourriere, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).
pubmed: 12642610
pmcid: 2173781
doi: 10.1083/jcb.200212128
Wheeler, J. R., Jain, S., Khong, A. & Parker, R. Isolation of yeast and mammalian stress granule cores. Methods 126, 12–17 (2017).
pubmed: 28457979
pmcid: 5924690
doi: 10.1016/j.ymeth.2017.04.020
Gruetter, R. et al. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc. Natl. Acad. Sci. USA 89, 1109–1112 (1992).
pubmed: 1736294
pmcid: 48395
doi: 10.1073/pnas.89.3.1109
Silver, I. A. & Erecinska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 5068–5076 (1994).
pubmed: 8046468
pmcid: 6577171
doi: 10.1523/JNEUROSCI.14-08-05068.1994
Languren, G., Montiel, T., Julio-Amilpas, A. & Massieu, L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochemistry Int. 63, 331–343 (2013).
doi: 10.1016/j.neuint.2013.06.018
Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).
pubmed: 32943735
pmcid: 8080614
doi: 10.1038/s12276-020-00504-8
Yang, L., Venneti, S. & Nagrath, D. Glutaminolysis: a hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017).
pubmed: 28301735
doi: 10.1146/annurev-bioeng-071516-044546
Rafalski, V. A., Mancini, E. & Brunet, A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 125, 5597–5608 (2012).
pubmed: 23420198
pmcid: 3575699
doi: 10.1242/jcs.114827
Hardie, D. G., Schaffer, B. E. & Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190–201 (2016).
pubmed: 26616193
doi: 10.1016/j.tcb.2015.10.013
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).
pubmed: 22500797
pmcid: 3331679
doi: 10.1016/j.cell.2012.03.017
Sato, T., Nakashima, A., Guo, L., Coffman, K. & Tamanoi, F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29, 2746–2752 (2010).
pubmed: 20190810
pmcid: 2953941
doi: 10.1038/onc.2010.28
Tauber, D. et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180, 411–426.e416 (2020).
pubmed: 31928844
pmcid: 7194247
doi: 10.1016/j.cell.2019.12.031
Mazroui, R. et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol. Biol. Cell 17, 4212–4219 (2006).
pubmed: 16870703
pmcid: 1635342
doi: 10.1091/mbc.e06-04-0318
Kedersha, N. et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845–860 (2016).
pubmed: 27022092
pmcid: 4810302
doi: 10.1083/jcb.201508028
Mehta, A. R. et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathologica 141, 257–279 (2021).
pubmed: 33398403
pmcid: 7847443
doi: 10.1007/s00401-020-02252-5
Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927–937 (2017).
pubmed: 28096475
pmcid: 5358336
Advani, V. M. & Ivanov, P. Stress granule subtypes: an emerging link to neurodegeneration. Cell. Mol. Life Sci. 77, 4827–4845 (2020).
pubmed: 32500266
pmcid: 7668291
doi: 10.1007/s00018-020-03565-0
Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e513 (2018).
pubmed: 29373831
pmcid: 5969999
doi: 10.1016/j.cell.2017.12.032
Emara, M. M. et al. Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem. Biophys. Res. Commun. 423, 763–769 (2012).
pubmed: 22705549
pmcid: 3399031
doi: 10.1016/j.bbrc.2012.06.033
Hofmann, S., Kedersha, N., Anderson, P. & Ivanov, P. Molecular mechanisms of stress granule assembly and disassembly. Biochimica et. Biophysica Acta Mol. Cell Res. 1868, 118876 (2021).
doi: 10.1016/j.bbamcr.2020.118876
Buchan, J. R., Muhlrad, D. & Parker, R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183, 441–455 (2008).
pubmed: 18981231
pmcid: 2575786
doi: 10.1083/jcb.200807043
Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).
pubmed: 11691993
doi: 10.1126/science.1063518
Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).
pubmed: 20444419
pmcid: 3081779
doi: 10.1016/j.cmet.2010.03.014
Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).
Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014).
pubmed: 24529383
pmcid: 3955179
doi: 10.1016/j.cell.2013.12.042
Hall, C. N., Klein-Flugge, M. C., Howarth, C. & Attwell, D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012).
pubmed: 22745494
pmcid: 3390246
doi: 10.1523/JNEUROSCI.0026-12.2012
TeSlaa, T. et al. The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33, 367–378.e365 (2021).
pubmed: 33472024
pmcid: 8088818
doi: 10.1016/j.cmet.2020.12.020
Schulz, A. et al. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. J. Cell Biol. 219, https://doi.org/10.1083/jcb.201807127 (2020).
Duran, J. et al. Lack of neuronal glycogen impairs memory formation and learning-dependent synaptic plasticity in mice. Front. Cell. Neurosci. 13, 374 (2019).
pubmed: 31456667
pmcid: 6700221
doi: 10.3389/fncel.2019.00374
Rai, A. et al. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis. 9, 201 (2018).
pubmed: 29422655
pmcid: 5833817
doi: 10.1038/s41419-017-0190-5
Saez, I. et al. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J. Cereb. Blood Flow. Metab. 34, 945–955 (2014).
pubmed: 24569689
pmcid: 4050236
doi: 10.1038/jcbfm.2014.33
Belanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).
pubmed: 22152301
doi: 10.1016/j.cmet.2011.08.016
Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353–360.e353 (2017).
pubmed: 28768174
pmcid: 5573225
doi: 10.1016/j.cmet.2017.07.010
Mann, D. M., Sumpter, P. Q., Davies, C. A. & Yates, P. O. Glycogen accumulations in the cerebral cortex in Alzheimer’s disease. Acta Neuropathologica 73, 181–184 (1987).
pubmed: 3037842
doi: 10.1007/BF00693786
Gertz, H. J., Cervos-Navarro, J., Frydl, V. & Schultz, F. Glycogen accumulation of the aging human brain. Mechanisms Ageing Dev. 31, 25–35 (1985).
doi: 10.1016/0047-6374(85)90024-7
Duran, J., Gruart, A., Garcia-Rocha, M., Delgado-Garcia, J. M. & Guinovart, J. J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 23, 3147–3156 (2014).
pubmed: 24452334
doi: 10.1093/hmg/ddu024
Cai, R. et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 129, 4539–4549 (2019).
pubmed: 31524631
pmcid: 6763248
doi: 10.1172/JCI129987
Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 8, https://doi.org/10.7554/eLife.45114 (2019).
Besson, M. T., Alegria, K., Garrido-Gerter, P., Barros, L. F. & Lievens, J. C. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS ONE 10, e0118765 (2015).
pubmed: 25761110
pmcid: 4356621
doi: 10.1371/journal.pone.0118765
Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 79, 132933 (2017).
Takanaga, H. & Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. FASEB J. 24, 2849–2858 (2010).
pubmed: 20354141
pmcid: 3230527
doi: 10.1096/fj.09-146472
Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).
pubmed: 19657394
pmcid: 2717805
doi: 10.1371/journal.pone.0006529
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903
pmcid: 4486245
doi: 10.1038/nmeth.3047
Toyama, E. Q. et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).
pubmed: 26816379
pmcid: 4852862
doi: 10.1126/science.aab4138
Ugolino, J. et al. Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet. 12, e1006443 (2016).
pubmed: 27875531
pmcid: 5119725
doi: 10.1371/journal.pgen.1006443
Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).
pubmed: 11430820
doi: 10.1016/S1097-2765(01)00265-9
Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971.e917 (2018).
pubmed: 29628143
pmcid: 6083872
doi: 10.1016/j.cell.2018.03.025
DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).
pubmed: 21944778
pmcid: 3202986
doi: 10.1016/j.neuron.2011.09.011
Du, Z. W. et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626 (2015).
pubmed: 25806427
doi: 10.1038/ncomms7626
Yoon, S. J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).
pubmed: 30573846
doi: 10.1038/s41592-018-0255-0
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425
pmcid: 4900885
doi: 10.1016/j.cell.2016.04.032
Liu, H. et al. A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation. J. Am. Chem. Soc. 143, 7368–7379 (2021).
pubmed: 33855846
pmcid: 8610145
doi: 10.1021/jacs.1c00131
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778
pmcid: 8454663
Schaukowitch, K., Joo, J. Y. & Kim, T. K. UV-RNA immunoprecipitation (UV-RIP) protocol in neurons. Methods Mol. Biol. 1468, 33–38 (2017).
pubmed: 27662868
doi: 10.1007/978-1-4939-4035-6_4
Liu, Y. et al. A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes Dev. 32, 1380–1397 (2018).
pubmed: 30366907
pmcid: 6217731
doi: 10.1101/gad.315564.118
Chida, J. & Kido, H. Extraction and quantification of adenosine triphosphate in mammalian tissues and cells. Methods Mol. Biol. 1098, 21–32 (2014).
pubmed: 24166365
doi: 10.1007/978-1-62703-718-1_2