Gene expression based inference of cancer drug sensitivity.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 09 2022
27 09 2022
Historique:
received:
18
11
2021
accepted:
12
09
2022
entrez:
27
9
2022
pubmed:
28
9
2022
medline:
30
9
2022
Statut:
epublish
Résumé
Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.
Identifiants
pubmed: 36167836
doi: 10.1038/s41467-022-33291-z
pii: 10.1038/s41467-022-33291-z
pmc: PMC9515171
doi:
Substances chimiques
Antineoplastic Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5680Informations de copyright
© 2022. The Author(s).
Références
Gerdes, H. et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 12, 1850 (2021).
pubmed: 33767176
pmcid: 7994645
doi: 10.1038/s41467-021-22170-8
Feng, F., Shen, B., Mou, X., Li, Y. & Li, H. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J. Genet. Genomics https://doi.org/10.1016/j.jgg.2021.03.007 (2021).
Baudino, T. A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015).
pubmed: 26033233
doi: 10.2174/1570163812666150602144310
Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol. 4, 19 (2020).
pubmed: 32566759
pmcid: 7296033
doi: 10.1038/s41698-020-0122-1
Maeda, H. & Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, 11 (2018).
pubmed: 29541939
pmcid: 5852245
doi: 10.1186/s40169-018-0185-6
Lopez, J. S. & Banerji, U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 14, 57–66 (2017).
pubmed: 27377132
doi: 10.1038/nrclinonc.2016.96
Suphavilai, C., Bertrand, D. & Nagarajan, N. Predicting Cancer Drug Response using a Recommender System. Bioinformatics 34, 3907–3914 (2018).
pubmed: 29868820
doi: 10.1093/bioinformatics/bty452
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
pubmed: 22460905
pmcid: 3320027
doi: 10.1038/nature11003
Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41, D955–D961 (2013).
pubmed: 23180760
doi: 10.1093/nar/gks1111
Seashore-Ludlow, B. et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Disco. 5, 1210–1223 (2015).
doi: 10.1158/2159-8290.CD-15-0235
Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). et al.
pmcid: 3919969
doi: 10.1038/ng.2764
Jia, P. et al. Deep generative neural network for accurate drug response imputation. Nat. Commun. 12, 1740 (2021).
pubmed: 33741950
pmcid: 7979803
doi: 10.1038/s41467-021-21997-5
Ammad-Ud-Din, M. et al. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics 32, i455–i463 (2016).
pubmed: 27587662
doi: 10.1093/bioinformatics/btw433
Wang, L., Li, X., Zhang, L. & Gao, Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer. 17, 513 (2017).
pubmed: 28768489
pmcid: 5541434
doi: 10.1186/s12885-017-3500-5
Chang, Y. et al. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Sci. Rep. 8, 8857 (2018).
pubmed: 29891981
pmcid: 5996063
doi: 10.1038/s41598-018-27214-6
Sakellaropoulos, T. et al. A Deep Learning Framework for Predicting Response to Therapy in Cancer. Cell Rep. 29, 3367–3373.e4. (2019).
pubmed: 31825821
doi: 10.1016/j.celrep.2019.11.017
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).
doi: 10.1186/1471-2105-14-7
Chawla, S. et al. UniPath: a uniform approach for pathway and gene-set based analysis of heterogeneity in single-cell epigenome and transcriptome profiles. Nucl Acids Res. 49, 1801 (2021).
pubmed: 33450029
pmcid: 7897517
doi: 10.1093/nar/gkab018
Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).
pubmed: 28319088
doi: 10.1038/ng.3818
Ben-Hamo, R. et al. Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat. Commun. 11, 3296 (2020).
pubmed: 32620799
pmcid: 7335104
doi: 10.1038/s41467-020-17090-y
Suphavilai, C. et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med 13, 189 (2021).
pubmed: 34915921
pmcid: 8680165
doi: 10.1186/s13073-021-01000-y
Nasri, H. & Rafieian-Kopaei, M. Metformin: Current knowledge. J. Res. Med. Sci. 19, 658–664 (2014).
pubmed: 25364368
pmcid: 4214027
Ballinger, A. Orlistat in the treatment of obesity. Expert Opin. Pharmacother. 1, 841–847 (2000).
pubmed: 11249520
doi: 10.1517/14656566.1.4.841
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Öztürk, H., Ozkirimli, E. & Özgür, A. A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 34, i295–i303 (2018).
pubmed: 29949957
pmcid: 6022674
doi: 10.1093/bioinformatics/bty287
Swain, M. PubChemPy: A way to interact with PubChem in Python. (2014).
Chollet, F. & Others. keras. (2015).
Riddick, G. et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27, 220–224 (2011).
pubmed: 21134890
doi: 10.1093/bioinformatics/btq628
Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput. 19, 63–74 (2014).
Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics. Mol. Cancer Res. 16, 269–278 (2018).
pubmed: 29133589
doi: 10.1158/1541-7786.MCR-17-0378
Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).
pubmed: 33128048
pmcid: 8135089
doi: 10.1038/s41588-020-00726-6
Lee, M.-C. W. et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc. Natl Acad. Sci. 111, E4726–E4735 (2014).
pubmed: 25339441
pmcid: 4226127
doi: 10.1073/pnas.1404656111
Teo, M. Y., Rathkopf, D. E. & Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 70, 479–499 (2019).
pubmed: 30691365
pmcid: 6441973
doi: 10.1146/annurev-med-051517-011947
Komura, K. et al. Current treatment strategies for advanced prostate cancer. Int. J. Urol. 25, 220–231 (2018).
pubmed: 29266472
doi: 10.1111/iju.13512
Swami, U., McFarland, T. R., Nussenzveig, R. & Agarwal, N. Advanced Prostate Cancer: Treatment Advances and Future Directions. Trends Cancer Res. 6, 702–715 (2020).
doi: 10.1016/j.trecan.2020.04.010
Mateo, J. et al. Accelerating precision medicine in metastatic prostate cancer. Nat. Cancer. 1, 1041–1053 (2020).
pubmed: 34258585
pmcid: 8274325
doi: 10.1038/s43018-020-00141-0
Nevedomskaya, E., Baumgart, S. J. & Haendler, B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int. J. Mol. Sci. 19, 1359 (2018).
Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).
pubmed: 15082523
doi: 10.1210/er.2002-0032
Rajamahanty, S., Alonzo, C., Aynehchi, S., Choudhury, M. & Konno, S. Growth inhibition of androgen-responsive prostate cancer cells with brefeldin A targeting cell cycle and androgen receptor. J. Biomed. Sci. 17, 5 (2010).
pubmed: 20102617
pmcid: 2843609
doi: 10.1186/1423-0127-17-5
LeDell, E. & Poirier, S. H2o automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML vol. 2020 (2020).
Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Disco. 4, 61–68 (2014).
doi: 10.1158/2159-8290.CD-13-0631
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228–247 (2009).
pubmed: 19097774
doi: 10.1016/j.ejca.2008.10.026
Yu, K., Toral-Barza, L., Shi, C., Zhang, W.-G. & Zask, A. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol. Ther. 7, 307–315 (2008).
pubmed: 18059185
doi: 10.4161/cbt.7.2.5334
Steele, T. M., Jathal, M. K., Siddiqui, S. & Ghosh, P. M. Abstract 4676: Overcoming EGFR-induced resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 76, 4676–4676 (2016).
doi: 10.1158/1538-7445.AM2016-4676
Levrier, C., Sadowski, M. C., Nelson, C. C., Healy, P. C. & Davis, R. A. Denhaminols A–H, Dihydro-β-agarofurans from the Endemic Australian Rainforest Plant Denhamia celastroides. J. Nat. Prod. 78, 111–119 (2015).
pubmed: 25579619
doi: 10.1021/np500740f
Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Krueger, F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. URL http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ . (Date of access: 28/04/2016) (2012).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Broad Institute TCGA Genome Data Analysis Center. Analysis-ready standardized TCGA data from Broad GDAC Firehose 2016_01_28 run. https://doi.org/10.7908/C11G0KM9 (2016).
Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 1109–1112 (2016).
pubmed: 27653561
pmcid: 6309165
doi: 10.1056/NEJMp1607591
Wright, M. N. & Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv [stat.ML] (2015).
Kuhn & Vaughan. parsnip: A common API to modeling and analysis functions. R package version 0.0.
Kuhn, M. caret: Classification and Regression Training. Astrophysics Source Code Library ascl:1505.003 (2015).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728
pmcid: 2929880
doi: 10.18637/jss.v033.i01
keras-tuner: Hyperparameter tuning for humans. (Github).
Li, Jamieson, DeSalvo & Rostamizadeh. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Machine 18, 6765–6816.
Smirnov, P. et al. PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics 32, 1244–1246 (2016).
pubmed: 26656004
doi: 10.1093/bioinformatics/btv723
Therneau. A package for survival analysis in S. R package version.
Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. impute: impute: Imputation for microarray data. R package version 1.62. 0. (2020).
Phipson, B., Zappia, L. & Oshlack, A. Gene length and detection bias in single cell RNA sequencing protocols. F1000Res. 6, 595 (2017).
pubmed: 28529717
pmcid: 5428526
doi: 10.12688/f1000research.11290.1
Howe, K. L. et al. Ensembl 2021. Nucl Acids Res. 49, D884–D891 (2021).
pubmed: 33137190
doi: 10.1093/nar/gkaa942
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-Seq data. BMC Bioinforma. 12, 480 (2011).
doi: 10.1186/1471-2105-12-480
Zhao, S., Ye, Z. & Stanton, R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 26, 903–909 (2020).
pubmed: 32284352
pmcid: 7373998
doi: 10.1261/rna.074922.120
Smriti Chawla, SmritiChawla/Precily: Precily: Release for Zenodo (v1.0.0), Zenodo. https://doi.org/10.5281/zenodo.7024834 (2022).