Gene expression based inference of cancer drug sensitivity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 09 2022
Historique:
received: 18 11 2021
accepted: 12 09 2022
entrez: 27 9 2022
pubmed: 28 9 2022
medline: 30 9 2022
Statut: epublish

Résumé

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.

Identifiants

pubmed: 36167836
doi: 10.1038/s41467-022-33291-z
pii: 10.1038/s41467-022-33291-z
pmc: PMC9515171
doi:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5680

Informations de copyright

© 2022. The Author(s).

Références

Gerdes, H. et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 12, 1850 (2021).
pubmed: 33767176 pmcid: 7994645 doi: 10.1038/s41467-021-22170-8
Feng, F., Shen, B., Mou, X., Li, Y. & Li, H. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J. Genet. Genomics https://doi.org/10.1016/j.jgg.2021.03.007 (2021).
Baudino, T. A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 12, 3–20 (2015).
pubmed: 26033233 doi: 10.2174/1570163812666150602144310
Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol. 4, 19 (2020).
pubmed: 32566759 pmcid: 7296033 doi: 10.1038/s41698-020-0122-1
Maeda, H. & Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, 11 (2018).
pubmed: 29541939 pmcid: 5852245 doi: 10.1186/s40169-018-0185-6
Lopez, J. S. & Banerji, U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat. Rev. Clin. Oncol. 14, 57–66 (2017).
pubmed: 27377132 doi: 10.1038/nrclinonc.2016.96
Suphavilai, C., Bertrand, D. & Nagarajan, N. Predicting Cancer Drug Response using a Recommender System. Bioinformatics 34, 3907–3914 (2018).
pubmed: 29868820 doi: 10.1093/bioinformatics/bty452
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
pubmed: 22460905 pmcid: 3320027 doi: 10.1038/nature11003
Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41, D955–D961 (2013).
pubmed: 23180760 doi: 10.1093/nar/gks1111
Seashore-Ludlow, B. et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Disco. 5, 1210–1223 (2015).
doi: 10.1158/2159-8290.CD-15-0235
Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). et al.
pmcid: 3919969 doi: 10.1038/ng.2764
Jia, P. et al. Deep generative neural network for accurate drug response imputation. Nat. Commun. 12, 1740 (2021).
pubmed: 33741950 pmcid: 7979803 doi: 10.1038/s41467-021-21997-5
Ammad-Ud-Din, M. et al. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics 32, i455–i463 (2016).
pubmed: 27587662 doi: 10.1093/bioinformatics/btw433
Wang, L., Li, X., Zhang, L. & Gao, Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer. 17, 513 (2017).
pubmed: 28768489 pmcid: 5541434 doi: 10.1186/s12885-017-3500-5
Chang, Y. et al. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Sci. Rep. 8, 8857 (2018).
pubmed: 29891981 pmcid: 5996063 doi: 10.1038/s41598-018-27214-6
Sakellaropoulos, T. et al. A Deep Learning Framework for Predicting Response to Therapy in Cancer. Cell Rep. 29, 3367–3373.e4. (2019).
pubmed: 31825821 doi: 10.1016/j.celrep.2019.11.017
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).
doi: 10.1186/1471-2105-14-7
Chawla, S. et al. UniPath: a uniform approach for pathway and gene-set based analysis of heterogeneity in single-cell epigenome and transcriptome profiles. Nucl Acids Res. 49, 1801 (2021).
pubmed: 33450029 pmcid: 7897517 doi: 10.1093/nar/gkab018
Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).
pubmed: 28319088 doi: 10.1038/ng.3818
Ben-Hamo, R. et al. Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat. Commun. 11, 3296 (2020).
pubmed: 32620799 pmcid: 7335104 doi: 10.1038/s41467-020-17090-y
Suphavilai, C. et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med 13, 189 (2021).
pubmed: 34915921 pmcid: 8680165 doi: 10.1186/s13073-021-01000-y
Nasri, H. & Rafieian-Kopaei, M. Metformin: Current knowledge. J. Res. Med. Sci. 19, 658–664 (2014).
pubmed: 25364368 pmcid: 4214027
Ballinger, A. Orlistat in the treatment of obesity. Expert Opin. Pharmacother. 1, 841–847 (2000).
pubmed: 11249520 doi: 10.1517/14656566.1.4.841
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Öztürk, H., Ozkirimli, E. & Özgür, A. A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 34, i295–i303 (2018).
pubmed: 29949957 pmcid: 6022674 doi: 10.1093/bioinformatics/bty287
Swain, M. PubChemPy: A way to interact with PubChem in Python. (2014).
Chollet, F. & Others. keras. (2015).
Riddick, G. et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27, 220–224 (2011).
pubmed: 21134890 doi: 10.1093/bioinformatics/btq628
Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput. 19, 63–74 (2014).
Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics. Mol. Cancer Res. 16, 269–278 (2018).
pubmed: 29133589 doi: 10.1158/1541-7786.MCR-17-0378
Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).
pubmed: 33128048 pmcid: 8135089 doi: 10.1038/s41588-020-00726-6
Lee, M.-C. W. et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc. Natl Acad. Sci. 111, E4726–E4735 (2014).
pubmed: 25339441 pmcid: 4226127 doi: 10.1073/pnas.1404656111
Teo, M. Y., Rathkopf, D. E. & Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 70, 479–499 (2019).
pubmed: 30691365 pmcid: 6441973 doi: 10.1146/annurev-med-051517-011947
Komura, K. et al. Current treatment strategies for advanced prostate cancer. Int. J. Urol. 25, 220–231 (2018).
pubmed: 29266472 doi: 10.1111/iju.13512
Swami, U., McFarland, T. R., Nussenzveig, R. & Agarwal, N. Advanced Prostate Cancer: Treatment Advances and Future Directions. Trends Cancer Res. 6, 702–715 (2020).
doi: 10.1016/j.trecan.2020.04.010
Mateo, J. et al. Accelerating precision medicine in metastatic prostate cancer. Nat. Cancer. 1, 1041–1053 (2020).
pubmed: 34258585 pmcid: 8274325 doi: 10.1038/s43018-020-00141-0
Nevedomskaya, E., Baumgart, S. J. & Haendler, B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int. J. Mol. Sci. 19, 1359 (2018).
Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).
pubmed: 15082523 doi: 10.1210/er.2002-0032
Rajamahanty, S., Alonzo, C., Aynehchi, S., Choudhury, M. & Konno, S. Growth inhibition of androgen-responsive prostate cancer cells with brefeldin A targeting cell cycle and androgen receptor. J. Biomed. Sci. 17, 5 (2010).
pubmed: 20102617 pmcid: 2843609 doi: 10.1186/1423-0127-17-5
LeDell, E. & Poirier, S. H2o automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML vol. 2020 (2020).
Wagle, N. et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Disco. 4, 61–68 (2014).
doi: 10.1158/2159-8290.CD-13-0631
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 45, 228–247 (2009).
pubmed: 19097774 doi: 10.1016/j.ejca.2008.10.026
Yu, K., Toral-Barza, L., Shi, C., Zhang, W.-G. & Zask, A. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol. Ther. 7, 307–315 (2008).
pubmed: 18059185 doi: 10.4161/cbt.7.2.5334
Steele, T. M., Jathal, M. K., Siddiqui, S. & Ghosh, P. M. Abstract 4676: Overcoming EGFR-induced resistance to enzalutamide in castration-resistant prostate cancer. Cancer Res. 76, 4676–4676 (2016).
doi: 10.1158/1538-7445.AM2016-4676
Levrier, C., Sadowski, M. C., Nelson, C. C., Healy, P. C. & Davis, R. A. Denhaminols A–H, Dihydro-β-agarofurans from the Endemic Australian Rainforest Plant Denhamia celastroides. J. Nat. Prod. 78, 111–119 (2015).
pubmed: 25579619 doi: 10.1021/np500740f
Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Krueger, F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. URL http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ . (Date of access: 28/04/2016) (2012).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Broad Institute TCGA Genome Data Analysis Center. Analysis-ready standardized TCGA data from Broad GDAC Firehose 2016_01_28 run. https://doi.org/10.7908/C11G0KM9 (2016).
Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 1109–1112 (2016).
pubmed: 27653561 pmcid: 6309165 doi: 10.1056/NEJMp1607591
Wright, M. N. & Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv [stat.ML] (2015).
Kuhn & Vaughan. parsnip: A common API to modeling and analysis functions. R package version 0.0.
Kuhn, M. caret: Classification and Regression Training. Astrophysics Source Code Library ascl:1505.003 (2015).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728 pmcid: 2929880 doi: 10.18637/jss.v033.i01
keras-tuner: Hyperparameter tuning for humans. (Github).
Li, Jamieson, DeSalvo & Rostamizadeh. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Machine 18, 6765–6816.
Smirnov, P. et al. PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics 32, 1244–1246 (2016).
pubmed: 26656004 doi: 10.1093/bioinformatics/btv723
Therneau. A package for survival analysis in S. R package version.
Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. impute: impute: Imputation for microarray data. R package version 1.62. 0. (2020).
Phipson, B., Zappia, L. & Oshlack, A. Gene length and detection bias in single cell RNA sequencing protocols. F1000Res. 6, 595 (2017).
pubmed: 28529717 pmcid: 5428526 doi: 10.12688/f1000research.11290.1
Howe, K. L. et al. Ensembl 2021. Nucl Acids Res. 49, D884–D891 (2021).
pubmed: 33137190 doi: 10.1093/nar/gkaa942
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-Seq data. BMC Bioinforma. 12, 480 (2011).
doi: 10.1186/1471-2105-12-480
Zhao, S., Ye, Z. & Stanton, R. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 26, 903–909 (2020).
pubmed: 32284352 pmcid: 7373998 doi: 10.1261/rna.074922.120
Smriti Chawla, SmritiChawla/Precily: Precily: Release for Zenodo (v1.0.0), Zenodo. https://doi.org/10.5281/zenodo.7024834 (2022).

Auteurs

Smriti Chawla (S)

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Anja Rockstroh (A)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.

Melanie Lehman (M)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.
Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.

Ellca Ratther (E)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.

Atishay Jain (A)

Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Anuneet Anand (A)

Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Apoorva Gupta (A)

Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India.

Namrata Bhattacharya (N)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.
Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Sarita Poonia (S)

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Priyadarshini Rai (P)

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Nirjhar Das (N)

Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.

Angshul Majumdar (A)

Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.
Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.
Department of Electronics & Communications Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.
Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.

Gaurav Ahuja (G)

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India.

Brett G Hollier (BG)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia.

Colleen C Nelson (CC)

Australian Prostate Cancer Research Centre-Queensland, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia. colleen.nelson@qut.edu.au.

Debarka Sengupta (D)

Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India. debarka@iiitd.ac.in.
Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India. debarka@iiitd.ac.in.
Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi, 110020, India. debarka@iiitd.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH