Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
11 2022
Historique:
received: 09 04 2021
accepted: 06 09 2022
pubmed: 26 10 2022
medline: 5 11 2022
entrez: 25 10 2022
Statut: ppublish

Résumé

Decisions that favor one's own interest versus the interest of another individual depend on context and the relationships between individuals. The neurobiology underlying selfish choices or choices that benefit others is not understood. We developed a two-choice social decision-making task in which mice can decide whether to share a reward with their conspecifics. Preference for altruistic choices was modulated by familiarity, sex, social contact, hunger, hierarchical status and emotional state matching. Fiber photometry recordings and chemogenetic manipulations demonstrated that basolateral amygdala (BLA) neurons are involved in the establishment of prosocial decisions. In particular, BLA neurons projecting to the prelimbic (PL) region of the prefrontal cortex mediated the development of a preference for altruistic choices, whereas PL projections to the BLA modulated self-interest motives for decision-making. This provides a neurobiological model of altruistic and selfish choices with relevance to pathologies associated with dysfunctions in social decision-making.

Identifiants

pubmed: 36280797
doi: 10.1038/s41593-022-01179-2
pii: 10.1038/s41593-022-01179-2
pmc: PMC7613781
mid: EMS153929
doi:

Banques de données

Dryad
['10.5061/dryad.bnzs7h4dv']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1505-1518

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Frith, C. D. Social cognition. Philos. Trans. R. Soc. B Biol. Sci. 363, 2033–2039 (2008).
doi: 10.1098/rstb.2008.0005
Rilling, J. K., King-Casas, B. & Sanfey, A. G. The neurobiology of social decision-making. Curr. Opin. Neurobiol. 18, 159–165 (2008).
pubmed: 18639633 doi: 10.1016/j.conb.2008.06.003
Batson, C. D. The naked emperor: seeking a more plausible genetic basis for psychological altruism. Econ. Philos. 26, 149–164 (2010).
doi: 10.1017/S0266267110000179
Preston, S. D. The origins of altruism in offspring care. Psychol. Bull. 139, 1305–1341 (2013).
Marsh, A. A. Neural, cognitive, and evolutionary foundations of human altruism. Wiley Interdiscip. Rev. Cognit. Sci. 7, 59–71 (2016).
doi: 10.1002/wcs.1377
Bartal, I. B.-A., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430 (2011).
pmcid: 3760221 doi: 10.1126/science.1210789
Hernandez-Lallement, J. et al. Harm to others acts as a negative reinforcer in rats. Curr. Biol. 30, 949–961 (2020).
pubmed: 32142701 doi: 10.1016/j.cub.2020.01.017
Márquez, C., Rennie, S. M., Costa, D. F. & Moita, M. A. Prosocial choice in rats depends on food-seeking behavior displayed by recipients. Curr. Biol. 25, 1736–1745 (2015).
pubmed: 26051895 doi: 10.1016/j.cub.2015.05.018
Dolivo, V. & Taborsky, M. Norway rats reciprocate help according to the quality of help they received. Biol. Lett. 11, 20140959 (2015).
pubmed: 25716088 pmcid: 4360107 doi: 10.1098/rsbl.2014.0959
Burkett, J. P. et al. Oxytocin-dependent consolation behavior in rodents. Science 351, 375–378 (2016).
pubmed: 26798013 pmcid: 4737486 doi: 10.1126/science.aac4785
Choe, I. H. et al. Mice in social conflict show rule-observance behavior enhancing long-term benefit. Nat. Commun. 8, 1176 (2017).
pubmed: 29109508 pmcid: 5673895 doi: 10.1038/s41467-017-01091-5
De Waal, F. B. M. Putting the altruism back into altruism: the evolution of empathy. Annu. Rev. Psychol. 59, 279–300 (2008).
pubmed: 17550343 doi: 10.1146/annurev.psych.59.103006.093625
Qu, C., Ligneul, R., Van der Henst, J. B. & Dreher, J. C. An integrative interdisciplinary perspective on social dominance hierarchies. Trends Cognit. Sci. 21, 893–908 (2017).
doi: 10.1016/j.tics.2017.08.004
Cronin, K. A. Prosocial behaviour in animals: the influence of social relationships, communication and rewards. Anim. Behav. 84, 1085–1093 (2012).
doi: 10.1016/j.anbehav.2012.08.009
Dal Monte, O., Chu, C. C. J., Fagan, N. A. & Chang, S. W. C. Specialized medial prefrontal–amygdala coordination in other-regarding decision preference. Nat. Neurosci. 23, 565–574 (2020).
pubmed: 32094970 doi: 10.1038/s41593-020-0593-y
Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A. & Tye, K. M. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321, 197–209 (2016).
pubmed: 26204817 doi: 10.1016/j.neuroscience.2015.07.041
Allsop, S. A. et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173, 1329–1342 (2018).
pubmed: 29731170 pmcid: 6345560 doi: 10.1016/j.cell.2018.04.004
Wassum, K. M. & Izquierdo, A. The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. 57, 271–283 (2015).
pubmed: 26341938 pmcid: 4681295 doi: 10.1016/j.neubiorev.2015.08.017
Camerer, C. F. & Fehr, E. Foundations of Human Sociality, 55–95 (Oxford University Press, 2004).
Zhou, T., Sandi, C. & Hu, H. Advances in understanding neural mechanisms of social dominance. Curr. Opin. Neurobiol. 49, 99–107 (2018).
pubmed: 29428628 doi: 10.1016/j.conb.2018.01.006
Paradiso, E., Gazzola, V. & Keysers, C. Neural mechanisms necessary for empathy-related phenomena across species. Curr. Opin. Neurobiol. 68, 107–115 (2021).
pubmed: 33756399 doi: 10.1016/j.conb.2021.02.005
Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca
pubmed: 20190743 pmcid: 2958925 doi: 10.1038/nn.2504
Chang, S. W. C. et al. Neural mechanisms of social decision-making in the primate amygdala. Proc. Natl Acad. Sci. USA 112, 16012–16017 (2015).
pubmed: 26668400 pmcid: 4702988 doi: 10.1073/pnas.1514761112
Duvarci, S. & Pare, D. Amygdala microcircuits controlling learned fear. Neuron 82, 966–980 (2014).
pubmed: 24908482 pmcid: 4103014 doi: 10.1016/j.neuron.2014.04.042
Wang, F., Kessels, H. W. & Hu, H. The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci. 37, 674–682 (2014).
pubmed: 25160682 doi: 10.1016/j.tins.2014.07.005
Yizhar, O. & Klavir, O. Reciprocal amygdala–prefrontal interactions in learning. Curr. Opin. Neurobiol. 52, 149–155 (2018).
pubmed: 29982085 doi: 10.1016/j.conb.2018.06.006
Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).
pubmed: 30359607 pmcid: 6590698 doi: 10.1016/j.neuron.2018.10.001
Vogt, B. A. & Paxinos, G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 219, 185–192 (2014).
pubmed: 23229151 doi: 10.1007/s00429-012-0493-3
Ostlund, S. B. & Balleine, B. W. Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J. Neurosci. 25, 7763–7770 (2005).
pubmed: 16120777 pmcid: 6725247 doi: 10.1523/JNEUROSCI.1921-05.2005
Juavinett, A. L., Erlich, J. C. & Churchland, A. K. Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility. Curr. Opin. Neurobiol. 49, 42–50 (2018).
pubmed: 29179005 doi: 10.1016/j.conb.2017.11.001
Hernandez-Lallement, J., Van Wingerden, M., Marx, C., Srejic, M. & Kalenscher, T. Rats prefer mutual rewards in a prosocial choice task. Front. Neurosci. 9, 443 (2015).
Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
doi: 10.1086/406755
Zink, C. F. et al. Know your place: neural processing of social hierarchy in humans. Neuron 58, 273–283 (2008).
pubmed: 18439411 pmcid: 2430590 doi: 10.1016/j.neuron.2008.01.025
Gachomba, M. J. M. et al. Multimodal cues displayed by submissive rats promote prosocial choices by dominants. Curr. Biol. 32, 3288–3301 (2022).
pubmed: 35803272 doi: 10.1016/j.cub.2022.06.026
Killcross, S., Robbins, T. W. & Everitt, B. J. Different types of fear conditioned behavior mediated by separate nuclei within amygdala. Nature 388, 377–380 (1997).
pubmed: 9237754 doi: 10.1038/41097
Terburg, D. et al. The basolateral amygdala is essential for rapid escape: a human and rodent study. Cell 175, 723–735 (2018).
pubmed: 30340041 pmcid: 6198024 doi: 10.1016/j.cell.2018.09.028
Balleine, B. W. & Killcross, S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci. 29, 272–279 (2006).
pubmed: 16545468 doi: 10.1016/j.tins.2006.03.002
Knoch, D. & Fehr, E. Resisting the power of temptations: the right prefrontal cortex and self-control. Ann. N. Y. Acad. Sci. 1104, 123–134 (2007).
pubmed: 17344543 doi: 10.1196/annals.1390.004
Padilla-Coreano, N. et al. Cortical ensembles orchestrate social competition through hypothalamic outputs. Nature 603, 667–671 (2022).
pubmed: 35296862 pmcid: 9576144 doi: 10.1038/s41586-022-04507-5
Scheggia, D. et al. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat. Neurosci. 23, 47–60 (2020).
pubmed: 31844317 doi: 10.1038/s41593-019-0551-8
Keysers, C., Knapska, E., Moita, M. A. & Gazzola, V. Emotional contagion and prosocial behavior in rodents. Trends Cognit. Sci. 26, 688–706 (2022).
doi: 10.1016/j.tics.2022.05.005
Preston, S. D. & de Waal, F. B. M. Empathy: its ultimate and proximate bases. Behav. Brain Sci. 25, 1–20 (2002).
pubmed: 12625087 doi: 10.1017/S0140525X02000018
Liu, Y. et al. Oxytocin modulates social value representations in the amygdala. Nat. Neurosci. 22, 633–641 (2019).
pubmed: 30911182 doi: 10.1038/s41593-019-0351-1
Panksepp, J. B. & Lahvis, G. P. Social reward among juvenile mice. Genes Brain Behav. 6, 661–671 (2007).
pubmed: 17212648 pmcid: 2040181 doi: 10.1111/j.1601-183X.2006.00295.x
Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. 24, 831–842 (2021).
pubmed: 33820999 pmcid: 8236486 doi: 10.1038/s41593-021-00828-2
Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
doi: 10.1111/2041-210X.12584
Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).
pubmed: 21960531 doi: 10.1126/science.1209951
De Vries, H., Stevens, J. M. G. & Vervaecke, H. Measuring and testing the steepness of dominance hierarchies. Anim. Behav. 71, 585–592 (2006).
doi: 10.1016/j.anbehav.2005.05.015
Konsman, J.-P. The mouse brain in stereotaxic coordinates. Psychoneuroendocrinology 28, 827–828 (2003).
doi: 10.1016/S0306-4530(03)00088-X
Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).
pubmed: 24949967 pmcid: 4123133 doi: 10.1016/j.cell.2014.05.017

Auteurs

Diego Scheggia (D)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy. diego.scheggia@unimi.it.
Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy. diego.scheggia@unimi.it.

Filippo La Greca (F)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Federica Maltese (F)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy.

Giulia Chiacchierini (G)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy.

Maria Italia (M)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Cinzia Molent (C)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy.
Dipartimento di Medicina Sperimentale (Di.Mes), Università degli Studi di Genova, Genova, Italy.

Fabrizio Bernardi (F)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy.

Giulia Coccia (G)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Nicolò Carrano (N)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Elisa Zianni (E)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Fabrizio Gardoni (F)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Monica Di Luca (M)

Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.

Francesco Papaleo (F)

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH