Drug Repurposing for Cystic Fibrosis: Identification of Drugs That Induce CFTR-Independent Fluid Secretion in Nasal Organoids.
TMEM16A
cystic fibrosis
drug repurposing
nasal organoids
screening assay
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
21 Oct 2022
21 Oct 2022
Historique:
received:
13
09
2022
revised:
12
10
2022
accepted:
18
10
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
29
10
2022
Statut:
epublish
Résumé
Individuals with cystic fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ~19% of pwCF cannot benefit from CFTR modulators Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here, we developed a medium-throughput 384-well screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR-dependent epithelial fluid secretion. From a ~1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including β2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in the Ussing chamber, and fluid secretion was not affected by TMEM16A, as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for medium-scale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.
Identifiants
pubmed: 36293514
pii: ijms232012657
doi: 10.3390/ijms232012657
pmc: PMC9603984
pii:
doi:
Substances chimiques
Cystic Fibrosis Transmembrane Conductance Regulator
126880-72-6
Chlorides
0
Adrenergic Agonists
0
CFTR protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Cystic Fibrosis Trust
ID : SRC013
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDB/04046/2020
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDP/04046/2020
Références
J Biol Chem. 2005 Oct 21;280(42):35751-9
pubmed: 16087672
Pharmacol Rev. 2012 Jan;64(1):1-15
pubmed: 22090471
EMBO J. 2019 Feb 15;38(4):
pubmed: 30643021
Sci Rep. 2019 Aug 28;9(1):12479
pubmed: 31462669
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16657-62
pubmed: 17925438
J Biol Chem. 2006 Apr 14;281(15):9859-68
pubmed: 16476738
Science. 1989 Sep 8;245(4922):1066-73
pubmed: 2475911
J Cyst Fibros. 2022 Sep;21(5):866-872
pubmed: 35440408
Eur Respir J. 2022 Feb 17;59(2):
pubmed: 34385272
J Gen Physiol. 1999 May;113(5):743-60
pubmed: 10228185
Biophys Rev. 2019 Oct;11(5):721-728
pubmed: 31502190
Eur Respir J. 2016 Sep;48(3):768-79
pubmed: 27471203
Am J Physiol Lung Cell Mol Physiol. 2016 Apr 1;310(7):L593-602
pubmed: 26801567
Nat Protoc. 2015 Oct;10(10):1474-85
pubmed: 26334867
Lancet. 2016 Nov 19;388(10059):2519-2531
pubmed: 27140670
Mol Pharmacol. 2022 Jun 9;:
pubmed: 35680165
Methods Mol Biol. 2019;1576:43-53
pubmed: 27539459
J Membr Biol. 2001 Jan 15;179(2):155-64
pubmed: 11220365
Science. 2008 Oct 24;322(5901):590-4
pubmed: 18772398
Nat Methods. 2020 Mar;17(3):261-272
pubmed: 32015543
Lancet. 2019 Nov 23;394(10212):1940-1948
pubmed: 31679946
J Biomed Biotechnol. 2011;2011:174306
pubmed: 22131798
J Biol Chem. 2011 Nov 25;286(47):41069-82
pubmed: 21914796
Curr Protoc Stem Cell Biol. 2016 May 12;37:IE.9.1-IE.9.15
pubmed: 27171795
N Engl J Med. 2011 Nov 3;365(18):1663-72
pubmed: 22047557
J Membr Biol. 1984;77(3):187-99
pubmed: 6699904
PLoS One. 2016 May 24;11(5):e0155771
pubmed: 27219012
J Physiol. 2019 Dec;597(24):5859-5878
pubmed: 31622498
Nature. 2008 Oct 30;455(7217):1210-5
pubmed: 18724360
J Cyst Fibros. 2022 May;21(3):456-462
pubmed: 35125294
Eur Respir J. 1997 Oct;10(10):2307-11
pubmed: 9387958
Am J Respir Cell Mol Biol. 2015 Jan;52(1):65-74
pubmed: 24978189
Expert Opin Ther Targets. 2018 Aug;22(8):687-701
pubmed: 30028216
Cells. 2020 Sep 21;9(9):
pubmed: 32967385
Cold Spring Harb Perspect Med. 2012 Jun;2(6):a009563
pubmed: 22675668
Cell. 2008 Sep 19;134(6):1019-29
pubmed: 18805094
Am J Physiol Renal Physiol. 2003 May;284(5):F948-54
pubmed: 12676735
Int J Mol Sci. 2021 Mar 25;22(7):
pubmed: 33806154
Pflugers Arch. 2017 Sep;469(9):1073-1091
pubmed: 28455748
Cell Rep. 2021 Nov 9;37(6):109920
pubmed: 34731648
J Clin Invest. 2010 Sep;120(9):3137-48
pubmed: 20739756
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16083-8
pubmed: 14668433
J Physiol. 2012 Dec 1;590(23):6141-55
pubmed: 22988141
Cell Signal. 2018 Apr;44:10-19
pubmed: 29331508
Life Sci Alliance. 2022 Aug 3;5(12):
pubmed: 35922154
Eur Respir J. 2020 Dec 24;56(6):
pubmed: 32732328
Cell. 1991 Sep 6;66(5):1027-36
pubmed: 1716180
N Engl J Med. 2019 Nov 7;381(19):1809-1819
pubmed: 31697873