Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
17
12
2020
accepted:
21
09
2022
pubmed:
4
11
2022
medline:
22
11
2022
entrez:
3
11
2022
Statut:
ppublish
Résumé
Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations
Identifiants
pubmed: 36323788
doi: 10.1038/s41586-022-05377-7
pii: 10.1038/s41586-022-05377-7
pmc: PMC9668748
doi:
Substances chimiques
RNA
63231-63-0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
532-539Subventions
Organisme : NIA NIH HHS
ID : RF1 AG071683
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH125252
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH094714
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH115746
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH109912
Pays : United States
Organisme : NIMH NIH HHS
ID : P50 MH106438
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG071683
Pays : United States
Organisme : NICHD NIH HHS
ID : P50 HD103557
Pays : United States
Organisme : NIMH NIH HHS
ID : F32 MH124337
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH121521
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH123922
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH110927
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).
pubmed: 30545856
pmcid: 6443102
doi: 10.1126/science.aat8127
Wu, Y. E., Parikshak, N. N., Belgard, T. G. & Geschwind, D. H. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat. Neurosci. 19, 1463–1476 (2016).
pubmed: 27571009
pmcid: 5841760
doi: 10.1038/nn.4373
Sun, W. et al. Histone acetylome-wide association study of autism spectrum disorder. Cell 167, 1385–1397.e11 (2016).
pubmed: 27863250
doi: 10.1016/j.cell.2016.10.031
Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).
pubmed: 21614001
pmcid: 3607626
doi: 10.1038/nature10110
Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540, 423–427 (2016).
pubmed: 27919067
pmcid: 7102905
doi: 10.1038/nature20612
Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).
pubmed: 29439242
pmcid: 5898828
doi: 10.1126/science.aad6469
Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).
pubmed: 30901538
pmcid: 6432948
doi: 10.1016/j.cell.2019.01.015
de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345–361 (2016).
pubmed: 27050589
pmcid: 5072455
doi: 10.1038/nm.4071
Ramaswami, G. et al. Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism. Nat. Commun. 11, 4873 (2020).
pubmed: 32978376
pmcid: 7519165
doi: 10.1038/s41467-020-18526-1
Walker, R. L. et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell 179, 750–771.e22 (2019).
pubmed: 31626773
pmcid: 8963725
doi: 10.1016/j.cell.2019.09.021
Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nat. Neurosci. 11, 1271–1282 (2008).
pubmed: 18849986
pmcid: 2756411
doi: 10.1038/nn.2207
Bernard, A. et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012).
pubmed: 22445337
pmcid: 3628746
doi: 10.1016/j.neuron.2012.03.002
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553
pmcid: 4243026
doi: 10.1038/nature11405
Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond Brodmann. Neuron 88, 1086–1107 (2015).
pubmed: 26687219
doi: 10.1016/j.neuron.2015.12.001
Klingler, E. et al. Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599, 453–457 (2021).
pubmed: 34754107
doi: 10.1038/s41586-021-04048-3
Fontanet, P. A., Ríos, A. S., Alsina, F. C., Paratcha, G. & Ledda, F. Pea3 transcription factors, Etv4 and Etv5, are required for proper hippocampal dendrite development and plasticity. Cereb. Cortex 28, 236–249 (2018).
pubmed: 27909004
doi: 10.1093/cercor/bhw372
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).
doi: 10.2202/1544-6115.1128
Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and reproducible? PLoS Comput. Biol. 7, e1001057 (2011).
pubmed: 21283776
pmcid: 3024255
doi: 10.1371/journal.pcbi.1001057
Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).
pubmed: 24267887
pmcid: 3934107
doi: 10.1016/j.cell.2013.10.031
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
pubmed: 30804558
pmcid: 6454898
doi: 10.1038/s41588-019-0344-8
Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013).
pubmed: 24090431
pmcid: 3851189
doi: 10.1186/2040-2392-4-36
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
pubmed: 31435019
pmcid: 6919571
doi: 10.1038/s41586-019-1506-7
Keller, D., Erö, C. & Markram, H. Cell densities in the mouse brain: a systematic review. Front. Neuroanat. 12, 83 (2018).
pubmed: 30405363
pmcid: 6205984
doi: 10.3389/fnana.2018.00083
Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).
pubmed: 20798050
pmcid: 2936588
doi: 10.1073/pnas.1010356107
Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).
pubmed: 26729880
pmcid: 4725503
doi: 10.1073/pnas.1524208113
Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).
pubmed: 31557462
pmcid: 9245854
doi: 10.1016/j.neuron.2019.07.009
Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor cortices. PLoS Biol. 18, e3000678 (2020).
pubmed: 32243449
pmcid: 7159250
doi: 10.1371/journal.pbio.3000678
Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics 2, 100106 (2022).
pubmed: 35419551
pmcid: 9004682
doi: 10.1016/j.xgen.2022.100107
Gupta, S. et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5, 5748 (2014).
pubmed: 25494366
doi: 10.1038/ncomms6748
Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, 2013).
Ecker, C. et al. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc. Natl Acad. Sci. USA 110, 13222–13227 (2013).
pubmed: 23878213
pmcid: 3740833
doi: 10.1073/pnas.1221880110
Hilgetag, C. C., Beul, S. F., van Albada, S. J. & Goulas, A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw. Neurosci. 3, 905–923 (2019).
pubmed: 31637331
pmcid: 6777964
doi: 10.1162/netn_a_00100
Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).
pubmed: 34616070
pmcid: 8494648
doi: 10.1038/s41586-021-03910-8
Patrick, E. et al. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression. PLoS Comput. Biol. 16, e1008120 (2020).
pubmed: 32804935
pmcid: 7451979
doi: 10.1371/journal.pcbi.1008120
Arzalluz-Luque, Á. & Conesa, A. Single-cell RNAseq for the study of isoforms—how is that possible? Genome Biol. 19, 110 (2018).
pubmed: 30097058
pmcid: 6085759
doi: 10.1186/s13059-018-1496-z
Zhu, P. J. et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science 366, 843–849 (2019).
pubmed: 31727829
pmcid: 7299149
doi: 10.1126/science.aaw5185
Di Nardo, A. et al. Phenotypic screen with TSC-deficient neurons reveals heat-shock machinery as a druggable pathway for mTORC1 and reduced cilia. Cell Rep. 31, 107780 (2020).
pubmed: 32579942
pmcid: 7381997
doi: 10.1016/j.celrep.2020.107780
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019)
Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018)
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).
Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16 (2018).
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).
Andrews, S. et al. FastQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).
pubmed: 31691826
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).
pubmed: 23103226
pmcid: 3487130
doi: 10.1016/j.ajhg.2012.09.004
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
pubmed: 21816040
pmcid: 3163565
doi: 10.1186/1471-2105-12-323
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
pubmed: 30357393
doi: 10.1093/nar/gky955
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).
pubmed: 22285995
pmcid: 3297825
doi: 10.1093/biostatistics/kxr054
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793–798 (2020).
Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).
pubmed: 31097668
pmcid: 7678724
doi: 10.1126/science.aav8130
Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8, giz107 (2019).
pubmed: 31544212
pmcid: 6755255
doi: 10.1093/gigascience/giz107
He, L. et al. NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data. Commun. Biol. 4, 629 (2021).
pubmed: 34040149
pmcid: 8155058
doi: 10.1038/s42003-021-02146-6
Wong, C. C. Y. et al. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum. Mol. Genet. 28, 2201–2211 (2019).
pubmed: 31220268
pmcid: 6602383
doi: 10.1093/hmg/ddz052