Methionine oxidation in bacteria: A reversible post-translational modification.
antioxidant system
bacteria
methionine sulfoxide
methionine sulfoxide reductases
protein oxidation
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
revised:
04
11
2022
received:
29
08
2022
accepted:
05
11
2022
pubmed:
10
11
2022
medline:
15
3
2023
entrez:
9
11
2022
Statut:
ppublish
Résumé
Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence.
Substances chimiques
Methionine
AE28F7PNPL
Methionine Sulfoxide Reductases
EC 1.8.4.-
Racemethionine
73JWT2K6T3
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
143-150Informations de copyright
© 2022 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Références
Abulimiti, A., Qiu, X., Chen, J., Liu, Y. & Chang, Z. (2003) Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochemical and Biophysical Research Communications, 305, 87-93.
Achilli, C., Ciana, A. & Minetti, G. (2015) The discovery of methionine sulfoxide reductase enzymes: an historical account and future perspectives. BioFactors, 41, 135-152.
Alamuri, P. & Maier, R.J. (2004) Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Molecular Microbiology, 53, 1397-1406.
Alamuri, P. & Maier, R.J. (2006) Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. Journal of Bacteriology, 188, 5839-5850.
Aledo, J.C., Cantón, F.R. & Veredas, F.J. (2017) A machine learning approach for predicting methionine oxidation sites. BMC Bioinformatics, 18, 430.
Aussel, L. & Ezraty, B. (2021) Methionine redox homeostasis in protein quality control. Frontiers in Molecular Biosciences, 8, 1-8.
Benoit, S.L., Bayyareddy, K., Mahawar, M., Sharp, J.S. & Maier, R.J. (2013) Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase. Journal of Bacteriology, 195, 5396-5401.
Bettinger, J.Q., Welle, K.A., Hryhorenko, J.R. & Ghaemmaghami, S. (2020) Quantitative analysis of in vivo methionine oxidation of the human proteome. Journal of Proteome Research, 19, 624-633.
Black, S.D. & Mould, D.R. (1991) Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Analytical Biochemistry, 193, 72-82.
Boschi-Muller, S. & Branlant, G. (2014) Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Bioorganic Chemistry, 57, 222-230.
Brokx, S.J., Rothery, R.A., Zhang, G., Ng, D.P. & Weiner, J.H. (2005) Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry, 44, 10339-10348.
Brot, N., Weissbach, L., Werth, J. & Weissbach, H. (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proceedings of the National Academy of Sciences of the United States of America, 78, 2155-2158.
Chao, C.-C., Ma, Y.-S. & Stadtman, E.R. (1997) Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proceedings of the National Academy of Sciences, 94, 2969-2974.
Cremers, C.M. & Jakob, U. (2013) Oxidant sensing by reversible disulfide bond formation. Journal of Biological Chemistry, 288, 26489-26496.
Davies, M.J. (2005) The oxidative environment and protein damage. Biochimica et Biophysica Acta, 1703, 93-109.
Delaye, L., Becerra, A., Orgel, L. & Lazcano, A. (2007) Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. Journal of Molecular Evolution, 64, 15-32.
Delmar, J.A., Buehler, E., Chetty, A.K., Das, A., Quesada, G.M., Wang, J. et al. (2021) Machine learning prediction of methionine and tryptophan photooxidation susceptibility. Molecular Therapy - Methods & Clinical Development, 21, 466-477.
Denkel, L.A., Horst, S.A., Rouf, S.F., Kitowski, V., Böhm, O.M., Rhen, M. et al. (2011) Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PLoS One, 6, e26974.
Dhouib, R., Othman, D.S.M.P., Lin, V., Lai, X.J., Wijesinghe, H.G.S., Essilfie, A.-T. et al. (2016) A novel, molybdenum-containing methionine sulfoxide reductase supports survival of Haemophilus influenzae in an in vivo model of infection. Frontiers in Microbiology, 7, 1-16.
Douglas, T., Daniel, D.S., Parida, B.K., Jagannath, C. & Dhandayuthapani, S. (2004) Methionine sulfoxide reductase a (MsrA) deficiency affects the survival of mycobacterium smegmatis within macrophages. Journal of Bacteriology, 186, 3590-3598.
Drazic, A., Gebendorfer, K.M., Mak, S., Steiner, A., Krause, M., Bepperling, A. et al. (2014) Tetramers are the activation-competent species of the HOCl-specific transcription factor HypT. The Journal of Biological Chemistry, 289, 977-986.
Drazic, A., Miura, H., Peschek, J., Le, Y., Bach, N.C., Kriehuber, T. et al. (2013) Methionine oxidation activates a transcription factor in response to oxidative stress. Proceedings of the National Academy of Sciences, 110, 9493-9498.
Dworkin, J. (2015) Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 24, 47-52.
El Hajj, S., Henry, C., Andrieu, C., Vergnes, A., Loiseau, L., Brasseur, G. et al. (2022) HprSR is a reactive chlorine species-sensing, two-component system in Escherichia coli. Journal of Bacteriology, 204, e00449-21.
Ezraty, B., Bos, J., Barras, F. & Aussel, L. (2005) Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. Journal of Bacteriology, 187, 231-237.
Ezraty, B., Gennaris, A., Barras, F. & Collet, J.-F. (2017) Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 15, 385-396.
Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D. & Barras, F. (2004) Methionine sulfoxide reductases protect Ffh from oxidative damage in Escherichia coli. The EMBO Journal, 23, 1868-1877.
Gaut, J.P., Yeh, G.C., Tran, H.D., Byun, J., Henderson, J.P., Richter, G.M. et al. (2001) Neutrophils employ the myeloperoxidase system to generate antimicrobial brominating and chlorinating oxidants during sepsis. Proceedings of the National Academy of Sciences, 98, 11961-11966.
Gebendorfer, K.M., Drazic, A., Le, Y., Gundlach, J., Bepperling, A., Kastenmüller, A. et al. (2012) Identification of a hypochlorite-specific transcription factor from Escherichia coli. The Journal of Biological Chemistry, 287, 6892-6903.
Gennaris, A., Ezraty, B., Henry, C., Agrebi, R., Vergnes, A., Oheix, E. et al. (2015) Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature, 528, 409-412.
Ghesquière, B. & Gevaert, K. (2014) Proteomics methods to study methionine oxidation. Mass Spectrometry Reviews, 33, 147-156.
Ghesquière, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M. et al. (2011) Redox proteomics of protein-bound methionine oxidation. Molecular & Cellular Proteomics, 10(M110), 006866, M110.006866.
Gladyshev, V.N. (2002) Thioredoxin and peptide methionine sulfoxide reductase: convergence of similar structure and function in distinct structural folds. Proteins: Structure, Function, and Bioinformatics, 46, 149-152.
Gray, M.J., Wholey, W.-Y. & Jakob, U. (2013) Bacterial responses to reactive chlorine species. Annual Review of Microbiology, 67, 141-160.
Grimaud, R., Ezraty, B., Mitchell, J.K., Lafitte, D., Briand, C., Derrick, P.J. et al. (2001) Repair of oxidized proteins: identification of a new methionine sulfoxide reductase. Journal of Biological Chemistry, 276, 48915-48920.
Han, A., Kim, M.-J., Kwak, G.-H., Son, J., Hwang, K.Y. & Kim, H.-Y. (2016) Essential role of the linker region in the higher catalytic efficiency of a bifunctional MsrA-MsrB fusion protein. Biochemistry, 55, 5117-5127.
Hardin, S.C., Larue, C.T., Oh, M.-H., Jain, V. & Huber, S.C. (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. The Biochemical Journal, 422, 305-312.
Hassouni, M.E., Chambost, J.P., Expert, D., Van Gijsegem, F. & Barras, F. (1999) The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proceedings of the National Academy of Sciences, 96, 887-892.
Henry, C., Loiseau, L., Vergnes, A., Vertommen, D., Mérida-Floriano, A., Chitteni-Pattu, S. et al. (2021) Redox controls RecA protein activity via reversible oxidation of its methionine residues. eLife, 10, e63747.
Hitchcock, A., Hall, S.J., Myers, J.D., Mulholland, F., Jones, M.A. & Kelly, D.J. (2010) Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Microbiology (Reading), 156, 2994-3010.
Imlay, J.A. (2008) Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755-776.
Jalal, N. & Lee, S.F. (2020) The MsrAB reducing pathway of Streptococcus gordonii is needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. PLoS One, 15, e0229375.
Jen, F.E.-C., Semchenko, E.A., Day, C.J., Seib, K.L. & Jennings, M.P. (2019) The Neisseria gonorrhoeae methionine sulfoxide reductase (MsrA/B) is a surface exposed, immunogenic, vaccine candidate. Frontiers in Immunology, 10, 1-9.
Jo, I., Kim, D., No, T., Hong, S., Ahn, J., Ryu, S. et al. (2019) Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator. Proceedings of the National Academy of Sciences, 116, 3740-3745.
John, G.S., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H. et al. (2001) Peptide methionine sulfoxide reductase from Escherichia coli and mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proceedings of the National Academy of Sciences, 98, 9901-9906.
Juillan-Binard, C., Picciocchi, A., Andrieu, J.-P., Dupuy, J., Petit-Hartlein, I., Caux-Thang, C. et al. (2017) A two-component NADPH oxidase (NOX)-like system in bacteria is involved in the electron transfer chain to the methionine sulfoxide reductase MsrP. Journal of Biological Chemistry, 292, 2485-2494.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
Kappler, U., Nasreen, M. & McEwan, A. (2019) New insights into the molecular physiology of sulfoxide reduction in bacteria. Advances in Microbial Physiology, 75, 1-51.
Khor, H.K., Fisher, M.T. & Schöneich, C. (2004) Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). Journal of Biological Chemistry, 279, 19486-19493.
Kim, Y.H., Berry, A.H., Spencer, D.S. & Stites, W.E. (2001) Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Engineering, 14, 343-347.
Klebanoff, S.J., Kettle, A.J., Rosen, H., Winterbourn, C.C. & Nauseef, W.M. (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of Leukocyte Biology, 93, 185-198.
Lavine, T.F. (1947) The formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. Journal of Biological Chemistry, 169, 477-491.
Lei, Y., Zhang, Y., Guenther, B., Kreth, J. & Herzberg, M. (2011) Mechanism of adhesion maintenance by methionine sulfoxide reductase in Streptococcus gordonii. Molecular Microbiology, 80, 726-738.
Levine, R.L., Mosoni, L., Berlett, B.S. & Stadtman, E.R. (1996) Methionine residues as endogenous antioxidants in proteins. Proceedings of the National Academy of Sciences, 93, 15036-15040.
Liang, X., Kaya, A., Zhang, Y., Le, D.T., Hua, D. & Gladyshev, V.N. (2012) Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins. BMC Biochemistry, 13, 21.
Lin, Z., Johnson, L.C., Weissbach, H., Brot, N., Lively, M.O. & Lowther, W.T. (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proceedings of the National Academy of Sciences, 104, 9597-9602.
Loiseau, L., Vergnes, A. & Ezraty, B. (2022) Methionine oxidation under anaerobic conditions in Escherichia coli. Molecular Microbiology, 118, 387-402.
Luo, S. & Levine, R.L. (2009) Methionine in proteins defends against oxidative stress. The FASEB Journal, 23, 464-472.
Mahawar, M., Tran, V., Sharp, J.S. & Maier, R.J. (2011) Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. Journal of Biological Chemistry, 286, 19159-19169.
Maisonneuve, E., Ezraty, B. & Dukan, S. (2008) Protein aggregates: an aging factor involved in cell death. Journal of Bacteriology, 190, 6070-6075.
Manta, B. & Gladyshev, V.N. (2017) Regulated methionine oxidation by monooxygenases. Free Radical Biology & Medicine, 109, 141-155.
Mastroeni, P., Vazquez-Torres, A., Fang, F.C., Xu, Y., Khan, S., Hormaeche, C.E. et al. (2000) Antimicrobial actions of the Nadph phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. Journal of Experimental Medicine, 192, 237-248.
McCaldon, P. & Argos, P. (1988) Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins: Structure, Function, and Bioinformatics, 4, 99-122.
Melkani, G.C., Kestetter, J., Sielaff, R., Zardeneta, G. & Mendoza, J.A. (2006) Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide. Biochemical and Biophysical Research Communications, 347, 534-539.
Melnyk, R.A., Youngblut, M.D., Clark, I.C., Carlson, H.K., Wetmore, K.M., Price, M.N. et al. (2015) Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. mBio, 6, e00233-00215.
Moskovitz, J. & Smith, A. (2021) Methionine sulfoxide and the methionine sulfoxide reductase system as modulators of signal transduction pathways: a review. Amino Acids, 53, 1011-1020.
Nasreen, M., Dhouib, R., Hosmer, J., Wijesinghe, H.G.S., Fletcher, A., Mahawar, M. et al. (2020) Peptide methionine sulfoxide reductase from Haemophilus influenzae is required for protection against HOCl and affects the host response to infection. ACS Infectious Diseases, 6, 1928-1939.
Nasreen, M., Nair, R.P., McEwan, A.G. & Kappler, U. (2022) The peptide methionine sulfoxide reductase (MsrAB) of Haemophilus influenzae repairs oxidatively damaged outer membrane and periplasmic proteins involved in nutrient acquisition and virulence. Antioxidants, 11, 1557.
Nlelsen, H.K., Löliger, J. & Hurrell, R.F. (1985) Reactions of proteins with oxidizing lipids: 1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein-methyl linolenate model system. British Journal of Nutrition, 53, 61-73.
Pattison, D.I. & Davies, M.J. (2001) Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chemical Research in Toxicology, 14, 1453-1464.
Romsang, A., Atichartpongkul, S., Trinachartvanit, W., Vattanaviboon, P. & Mongkolsuk, S. (2013) Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. Journal of Bacteriology, 195, 3299-3308.
Rosen, H., Klebanoff, S.J., Wang, Y., Brot, N., Heinecke, J.W. & Fu, X. (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proceedings of the National Academy of Sciences, 106, 18686-18691.
Saha, S.S., Hashino, M., Suzuki, J., Uda, A., Watanabe, K., Shimizu, T. et al. (2017) Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice. FEMS Microbiology Letters, 364, fnw260.
Sankar, K., Hoi, K.H., Yin, Y., Ramachandran, P., Andersen, N., Hilderbrand, A. et al. (2018) Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. mAbs, 10, 1281-1290.
Scheible, M., Nguyen, C.T., Luong, T.T., Lee, J.H., Chen, Y.-W., Chang, C. et al. (2022) The fused methionine sulfoxide reductase MsrAB promotes oxidative stress defense and bacterial virulence in Fusobacterium nucleatum. mBio, 13, e0302221.
Schmalstig, A.A., Benoit, S.L., Misra, S.K., Sharp, J.S. & Maier, R.J. (2018) Noncatalytic antioxidant role for Helicobacter pylori urease. Journal of Bacteriology, 200, e00124-18.
Shechter, Y., Burstein, Y. & Patchornik, A. (1975) Selective oxidation of methionine residues in proteins. Biochemistry, 14, 4497-4503.
Singh, V.K., Vaish, M., Johansson, T.R., Baum, K.R., Ring, R.P., Singh, S. et al. (2015) Significance of four methionine sulfoxide reductases in Staphylococcus aureus. PLoS One, 10, e0117594.
Skaar, E.P., Tobiason, D.M., Quick, J., Judd, R.C., Weissbach, H., Etienne, F. et al. (2002) The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proceedings of the National Academy of Sciences, 99, 10108-10113.
Spero, M.A., Jones, J., Lomenick, B., Chou, T.-F. & Newman, D.K. (2022) Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa. Molecular Microbiology, 118, 321-335.
Steinberg, R., Knüpffer, L., Origi, A., Asti, R. & Koch, H.-G. (2018) Co-translational protein targeting in bacteria. FEMS Microbiology Letters, 365, fny095.
Stewart, P.S., Zhang, T., Xu, R., Pitts, B., Walters, M.C., Roe, F. et al. (2016) Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms and Microbiomes, 2, 1-8.
Tarrago, L., Grosse, S., Siponen, M.I., Lemaire, D., Alonso, B., Miotello, G. et al. (2018) Rhodobacter sphaeroides methionine sulfoxide reductase P reduces R- and S-diastereomers of methionine sulfoxide from a broad-spectrum of protein substrates. The Biochemical Journal, 475, 3779-3795.
Tarrago, L., Péterfi, Z., Lee, B.C., Michel, T. & Gladyshev, V.N. (2015) Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nature Chemical Biology, 11, 332-338.
Tsvetkov, P.O., Ezraty, B., Mitchell, J.K., Devred, F., Peyrot, V., Derrick, P.J. et al. (2005) Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases. Biochimie, 87, 473-480.
Valverde, H., Cantón, F.R. & Aledo, J.C. (2019) MetOSite: an integrated resource for the study of methionine residues sulfoxidation. Bioinformatics, 35, 4849-4850.
Veredas, F.J., Cantón, F.R. & Aledo, J.C. (2017) Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions. Scientific Reports, 7, 40403.
Vergnes, A., Henry, C., Grassini, G., Loiseau, L., Hajj, S.E., Denis, Y. et al. (2022) Periplasmic oxidized-protein repair during copper stress in E. coli: a focus on the metallochaperone CusF. PLoS Genetics, 18, e1010180.
Vogt, W. (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radical Biology and Medicine, 18, 93-105.
Vriesema, A.J.M., Dankert, J. & Zaat, S.A.J. (2000) A shift from Oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA. Infection and Immunity, 68, 1061-1068.
Winterbourn, C.C., Kettle, A.J. & Hampton, M.B. (2016) Reactive oxygen species and neutrophil function. Annual Review of Biochemistry, 85, 765-792.
Wizemann, T.M., Moskovitz, J., Pearce, B.J., Cundell, D., Arvidson, C.G., So, M. et al. (1996) Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proceedings of the National Academy of Sciences, 93, 7985-7990.
Zhao, C., Hartke, A., La Sorda, M., Posteraro, B., Laplace, J.-M., Auffray, Y. et al. (2010) Role of methionine sulfoxide reductases a and B of Enterococcus faecalis in oxidative stress and virulence. Infection and Immunity, 78, 3889-3897.