Calibration and time fading characterization of a new optically stimulated luminescence film dosimeter.


Journal

Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746

Informations de publication

Date de publication:
Feb 2023
Historique:
revised: 14 10 2022
received: 24 05 2022
accepted: 20 10 2022
pubmed: 11 11 2022
medline: 18 2 2023
entrez: 10 11 2022
Statut: ppublish

Résumé

Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times. In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes. A novel BaFBr:Eu After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different

Sections du résumé

BACKGROUND BACKGROUND
Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times.
PURPOSE OBJECTIVE
In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes.
METHODS METHODS
A novel BaFBr:Eu
RESULTS RESULTS
After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R
CONCLUSIONS CONCLUSIONS
The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different

Identifiants

pubmed: 36353946
doi: 10.1002/mp.16076
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1185-1193

Subventions

Organisme : VLAIO
ID : VLAIO HBV.2020.3003

Informations de copyright

© 2022 American Association of Physicists in Medicine.

Références

Paix A, Antoni D, Waissi W, et al. Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: a review. Crit Rev Oncol Hematol. 2018;123(September):138-148. doi: 10.1016/j.critrevonc.2018.01.011
Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome. Eur J Cancer. 2006;42(8):1014-1030. doi: 10.1016/j.ejca.2006.01.025
Ohira S, Ueda Y, Akino Y, et al. HyperArc VMAT planning for single and multiple brain metastases stereotactic radiosurgery: a new treatment planning approach. Radiat Oncol. 2018;13(1):1-9. doi: 10.1186/s13014-017-0948-z
Schell MC, Bova FJ, Larson DA, et al. Stereotactic radiosurgery report of Task Group 42 Radiation Therapy Committee for the American Association. 1995;(5):50.
Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38(3):1313-1338. doi: 10.1118/1.3514120
Baldock C, De Deene Y, Doran S, et al. Polymer gel dosimetry. Phys Med Biol. 2010;55(5):R1-63. doi: 10.1088/0031-9155/55/5/R01
McJury M, Oldham M, Cosgrove VP, et al. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol. 2000;73(873):919-929. doi: 10.1259/bjr.73.873.11064643
Niroomand-Rad A, Chiu-Tsao S-T, Grams MP, et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med Phys. 2020;47(12):5986-6025. doi: 10.1002/mp.14497
Khachonkham S, Dreindl R, Heilemann G, et al. Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Phys Med Biol. 2018;63(6):065007. doi: 10.1088/1361-6560/AAB1EE
Escarcia F, Herrera J, Garcia O. SU-E-T-386: evaluation of EBT3 film response in different batches. Med Phys. 2015;42(6Part18):3422. doi: 10.1118/1.4924747
De Roover R, Berghen C, De Meerleer G, Depuydt T, Crijns W. Extended field radiotherapy measurements in a single shot using a BaFBr-based OSL-film. Phys Med Biol. 2019;64(16):165007. doi: 10.1088/1361-6560/ab2eff
Wouter C, Dirk V, Paul L, Tom D. A reusable OSL-film for 2D radiotherapy dosimetry. Phys Med Biol. 2017;62(21):8441-8454. doi: 10.1088/1361-6560/aa8de6
Knoll GF. Radiation Detection and Measurement, 4th Edition. 2010; doi: https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480#whats-new-section
Yukihara EG, McKeever SW. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys Med Biol. 2008;53(20):R351-R379. doi: 10.1088/0031-9155/53/20/R01
Viamonte A, Da Rosa LAR, Buckley LA, Cherpak A, Cygler JE. Radiotherapy dosimetry using a commercial OSL system. Med Phys. 2008;35(4):1261-1266. doi: 10.1118/1.2841940
Han Z, Driewer JP, Zheng Y, Low DA, Li HH. Quantitative megavoltage radiation therapy dosimetry using the storage phosphor KCl: Eu2+. Med Phys. 2009;36(8):3748-3757. doi: 10.1118/1.3171687
Sommer M, Henniger J. Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosimetry. 2006;119(1-4):394-397. doi: 10.1093/rpd/nci626
Kry SF, Alvarez P, Cygler JE, et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys. 2020;47(2):e19-e51. doi: 10.1002/mp.13839
Ahmed MF, Shrestha N, Schnell E, Ahmad S, Akselrod MS, Yukihara EG. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam. Phys Med Biol. 2016;61(21):7551-7570. doi: 10.1088/0031-9155/61/21/7551
Leblans P, Vandenbroucke D, Willems P. Storage phosphors for medical imaging. Materials (Basel). 2011;4(6):1034-1086. doi: 10.3390/ma4061034
Nascimento LF, Vanhavere F, Silva EH, DeDeene Y. A short-time fading study of Al2O3:C. Radiat Phys Chem. 2015;106:26-32. doi: 10.1016/j.radphyschem.2014.06.032
Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36(5):1690-1699. doi: 10.1118/1.3097283
Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34(12):4594-4604. doi: 10.1118/1.2804555
Chen R. On the analysis of thermally stimulated processes. J Electrostat. 1977;3(1-3):15-24. doi: 10.1016/0304-3886(77)90070-5
Halperin A, Braner AA. Evaluation of thermal activation energies from glow curves. Phys Rev. 1960;117(2):408-415. doi: 10.1103/PhysRev.117.408
Jain M, Guralnik B, Andersen MT. Stimulated luminescence emission from localized recombination in randomly distributed defects. J Phys Condens Matter. 2012;24(38):385402. doi: 10.1088/0953-8984/24/38/385402
Huntley DJ. An explanation of the power-law decay of luminescence. J Phys Condens Matter. 2006;18(4):1359-1365. doi: 10.1088/0953-8984/18/4/020
Visocekas R. Tunnelling radiative recombination in labradorite: its association with anomalous fading of thermoluminescence. Nucl Tracks Radiat Meas. 1985;10(4-6):521-529. doi: 10.1016/0735-245X(85)90053-5
Baril MR, Huntley DJ. Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars. J Phys Condens Matter. 2003;15(46):8029-8048. doi: 10.1088/0953-8984/15/46/018
Guérin G, Visocekas R. Volcanic feldspars anomalous fading: evidence for two different mechanisms. Radiat Meas. 2015;81:218-223. doi: 10.1016/j.radmeas.2015.08.009
Avouris P, Morgan TN. A tunneling model for the decay of luminescence in inorganic phosphors: the case of Zn2SiO4:Mn. J Chem Phys. 1981;74(8):4347-4355. doi: 10.1063/1.441677
Delbecq CJ, Toyozawa Y, Yuster PH. Tunneling recombination of trapped electrons and holes in KCl:AgCl and KCl:TlCl. Phys Rev B. 1974;9(10):4497-4505. doi: 10.1103/PhysRevB.9.4497
Ohuchi H, Yamadera A, Nakamura T. Functional equation for the fading correction of imaging plates. Nucl Instrum Methods Phys Res Sect A. 2000;450(2):343-352. doi: 10.1016/S0168-9002(00)00300-4
Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: the Auto-Zeff software. Med Phys. 2012;39(4):1769-1778. doi: 10.1118/1.3689810
Schembri V, Heijmen BJM. Optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al2O3 :C) for film dosimetry in radiotherapy. Published online 2007. doi: 10.1118/1.2737160
Setianegara J, Mazur TR, Yang D, Li HH. Dual-storage phosphor proton therapy dosimetry: Simultaneous quantification of dose and linear energy transfer. Med Phys. 2021;48(4):1941-1955. doi: 10.1002/mp.14748
Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys. 2011;38(5):2619-2628. doi: 10.1118/1.3575419
Niroomand-Rad A, Blackwell CR, Coursey BM, et al. Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys. 1998;25(11):2093-2115. doi: 10.1118/1.598407
Visocekas R, Ceva T, Marti C, Lefaucheux F, Robert MC. Tunneling processes in afterglow of calcite. Phys Status Solidi. 1976;35(1):315-327. doi: 10.1002/pssa.2210350134
Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. doi: 10.1002/MP.12810
Low DA, Harms WB, Mutic S, Purdy JA. A Technique for the Quantitative Evaluation of Dose Distributions. 1998. doi: 10.1118/1.598248
Weyh A, Konski A, Nalichowski A, Maier J, Lack D. Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT. J Appl Clin Med Phys. 2013;14(4):4065. doi: 10.1120/jacmp.v14i4.4065
Roa DE, Schiffner DC, Zhang J, et al. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 2012;37(3):257-264. doi: 10.1016/J.MEDDOS.2011.09.005

Auteurs

Marco Caprioli (M)

Department of Radiation Oncology, KU Leuven, Leuven, Belgium.

Laurence Delombaerde (L)

Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium.

Marijke De Saint-Hubert (M)

Research in Dosimetric Application group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.

Luana de Freitas Nascimento (L)

Research in Dosimetric Application group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.

Robin De Roover (R)

Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium.

Katleen Himschoot (K)

Corporate Innovation Office, Agfa N.V., Mortsel, Belgium.

Brent van der Heyden (B)

Research in Dosimetric Application group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.

Dirk Vandenbroucke (D)

Corporate Innovation Office, Agfa N.V., Mortsel, Belgium.

Paul Leblans (P)

Corporate Innovation Office, Agfa N.V., Mortsel, Belgium.

Wouter Crijns (W)

Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium.

Articles similaires

Humans Female Precision Medicine Radiotherapy Planning, Computer-Assisted Breast Neoplasms
Humans Proton Therapy Lung Neoplasms Radiotherapy Planning, Computer-Assisted Radiotherapy, Intensity-Modulated
In Situ Hybridization, Fluorescence Humans Chromosome Aberrations Radiometry Marine Toxins

Classifications MeSH