Calibration and time fading characterization of a new optically stimulated luminescence film dosimeter.
OSL
fading
film dosimetry
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Feb 2023
Feb 2023
Historique:
revised:
14
10
2022
received:
24
05
2022
accepted:
20
10
2022
pubmed:
11
11
2022
medline:
18
2
2023
entrez:
10
11
2022
Statut:
ppublish
Résumé
Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times. In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes. A novel BaFBr:Eu After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different
Sections du résumé
BACKGROUND
BACKGROUND
Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times.
PURPOSE
OBJECTIVE
In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes.
METHODS
METHODS
A novel BaFBr:Eu
RESULTS
RESULTS
After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R
CONCLUSIONS
CONCLUSIONS
The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1185-1193Subventions
Organisme : VLAIO
ID : VLAIO HBV.2020.3003
Informations de copyright
© 2022 American Association of Physicists in Medicine.
Références
Paix A, Antoni D, Waissi W, et al. Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: a review. Crit Rev Oncol Hematol. 2018;123(September):138-148. doi: 10.1016/j.critrevonc.2018.01.011
Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome. Eur J Cancer. 2006;42(8):1014-1030. doi: 10.1016/j.ejca.2006.01.025
Ohira S, Ueda Y, Akino Y, et al. HyperArc VMAT planning for single and multiple brain metastases stereotactic radiosurgery: a new treatment planning approach. Radiat Oncol. 2018;13(1):1-9. doi: 10.1186/s13014-017-0948-z
Schell MC, Bova FJ, Larson DA, et al. Stereotactic radiosurgery report of Task Group 42 Radiation Therapy Committee for the American Association. 1995;(5):50.
Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38(3):1313-1338. doi: 10.1118/1.3514120
Baldock C, De Deene Y, Doran S, et al. Polymer gel dosimetry. Phys Med Biol. 2010;55(5):R1-63. doi: 10.1088/0031-9155/55/5/R01
McJury M, Oldham M, Cosgrove VP, et al. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol. 2000;73(873):919-929. doi: 10.1259/bjr.73.873.11064643
Niroomand-Rad A, Chiu-Tsao S-T, Grams MP, et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med Phys. 2020;47(12):5986-6025. doi: 10.1002/mp.14497
Khachonkham S, Dreindl R, Heilemann G, et al. Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Phys Med Biol. 2018;63(6):065007. doi: 10.1088/1361-6560/AAB1EE
Escarcia F, Herrera J, Garcia O. SU-E-T-386: evaluation of EBT3 film response in different batches. Med Phys. 2015;42(6Part18):3422. doi: 10.1118/1.4924747
De Roover R, Berghen C, De Meerleer G, Depuydt T, Crijns W. Extended field radiotherapy measurements in a single shot using a BaFBr-based OSL-film. Phys Med Biol. 2019;64(16):165007. doi: 10.1088/1361-6560/ab2eff
Wouter C, Dirk V, Paul L, Tom D. A reusable OSL-film for 2D radiotherapy dosimetry. Phys Med Biol. 2017;62(21):8441-8454. doi: 10.1088/1361-6560/aa8de6
Knoll GF. Radiation Detection and Measurement, 4th Edition. 2010; doi: https://www.wiley.com/en-us/Radiation+Detection+and+Measurement%2C+4th+Edition-p-9780470131480#whats-new-section
Yukihara EG, McKeever SW. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys Med Biol. 2008;53(20):R351-R379. doi: 10.1088/0031-9155/53/20/R01
Viamonte A, Da Rosa LAR, Buckley LA, Cherpak A, Cygler JE. Radiotherapy dosimetry using a commercial OSL system. Med Phys. 2008;35(4):1261-1266. doi: 10.1118/1.2841940
Han Z, Driewer JP, Zheng Y, Low DA, Li HH. Quantitative megavoltage radiation therapy dosimetry using the storage phosphor KCl: Eu2+. Med Phys. 2009;36(8):3748-3757. doi: 10.1118/1.3171687
Sommer M, Henniger J. Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosimetry. 2006;119(1-4):394-397. doi: 10.1093/rpd/nci626
Kry SF, Alvarez P, Cygler JE, et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys. 2020;47(2):e19-e51. doi: 10.1002/mp.13839
Ahmed MF, Shrestha N, Schnell E, Ahmad S, Akselrod MS, Yukihara EG. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam. Phys Med Biol. 2016;61(21):7551-7570. doi: 10.1088/0031-9155/61/21/7551
Leblans P, Vandenbroucke D, Willems P. Storage phosphors for medical imaging. Materials (Basel). 2011;4(6):1034-1086. doi: 10.3390/ma4061034
Nascimento LF, Vanhavere F, Silva EH, DeDeene Y. A short-time fading study of Al2O3:C. Radiat Phys Chem. 2015;106:26-32. doi: 10.1016/j.radphyschem.2014.06.032
Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36(5):1690-1699. doi: 10.1118/1.3097283
Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34(12):4594-4604. doi: 10.1118/1.2804555
Chen R. On the analysis of thermally stimulated processes. J Electrostat. 1977;3(1-3):15-24. doi: 10.1016/0304-3886(77)90070-5
Halperin A, Braner AA. Evaluation of thermal activation energies from glow curves. Phys Rev. 1960;117(2):408-415. doi: 10.1103/PhysRev.117.408
Jain M, Guralnik B, Andersen MT. Stimulated luminescence emission from localized recombination in randomly distributed defects. J Phys Condens Matter. 2012;24(38):385402. doi: 10.1088/0953-8984/24/38/385402
Huntley DJ. An explanation of the power-law decay of luminescence. J Phys Condens Matter. 2006;18(4):1359-1365. doi: 10.1088/0953-8984/18/4/020
Visocekas R. Tunnelling radiative recombination in labradorite: its association with anomalous fading of thermoluminescence. Nucl Tracks Radiat Meas. 1985;10(4-6):521-529. doi: 10.1016/0735-245X(85)90053-5
Baril MR, Huntley DJ. Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars. J Phys Condens Matter. 2003;15(46):8029-8048. doi: 10.1088/0953-8984/15/46/018
Guérin G, Visocekas R. Volcanic feldspars anomalous fading: evidence for two different mechanisms. Radiat Meas. 2015;81:218-223. doi: 10.1016/j.radmeas.2015.08.009
Avouris P, Morgan TN. A tunneling model for the decay of luminescence in inorganic phosphors: the case of Zn2SiO4:Mn. J Chem Phys. 1981;74(8):4347-4355. doi: 10.1063/1.441677
Delbecq CJ, Toyozawa Y, Yuster PH. Tunneling recombination of trapped electrons and holes in KCl:AgCl and KCl:TlCl. Phys Rev B. 1974;9(10):4497-4505. doi: 10.1103/PhysRevB.9.4497
Ohuchi H, Yamadera A, Nakamura T. Functional equation for the fading correction of imaging plates. Nucl Instrum Methods Phys Res Sect A. 2000;450(2):343-352. doi: 10.1016/S0168-9002(00)00300-4
Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: the Auto-Zeff software. Med Phys. 2012;39(4):1769-1778. doi: 10.1118/1.3689810
Schembri V, Heijmen BJM. Optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al2O3 :C) for film dosimetry in radiotherapy. Published online 2007. doi: 10.1118/1.2737160
Setianegara J, Mazur TR, Yang D, Li HH. Dual-storage phosphor proton therapy dosimetry: Simultaneous quantification of dose and linear energy transfer. Med Phys. 2021;48(4):1941-1955. doi: 10.1002/mp.14748
Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys. 2011;38(5):2619-2628. doi: 10.1118/1.3575419
Niroomand-Rad A, Blackwell CR, Coursey BM, et al. Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys. 1998;25(11):2093-2115. doi: 10.1118/1.598407
Visocekas R, Ceva T, Marti C, Lefaucheux F, Robert MC. Tunneling processes in afterglow of calcite. Phys Status Solidi. 1976;35(1):315-327. doi: 10.1002/pssa.2210350134
Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. doi: 10.1002/MP.12810
Low DA, Harms WB, Mutic S, Purdy JA. A Technique for the Quantitative Evaluation of Dose Distributions. 1998. doi: 10.1118/1.598248
Weyh A, Konski A, Nalichowski A, Maier J, Lack D. Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT. J Appl Clin Med Phys. 2013;14(4):4065. doi: 10.1120/jacmp.v14i4.4065
Roa DE, Schiffner DC, Zhang J, et al. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 2012;37(3):257-264. doi: 10.1016/J.MEDDOS.2011.09.005