Crystal growth in confinement.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
16 11 2022
Historique:
received: 20 04 2022
accepted: 18 10 2022
entrez: 17 11 2022
pubmed: 18 11 2022
medline: 22 11 2022
Statut: epublish

Résumé

The growth of crystals confined in porous or cellular materials is ubiquitous in Nature and forms the basis of many industrial processes. Confinement affects the formation of biominerals in living organisms, of minerals in the Earth's crust and of salt crystals damaging porous limestone monuments, and is also used to control the growth of artificial crystals. However, the mechanisms by which confinement alters crystal shapes and growth rates are still not elucidated. Based on novel in situ optical observations of (001) surfaces of NaClO

Identifiants

pubmed: 36385223
doi: 10.1038/s41467-022-34330-5
pii: 10.1038/s41467-022-34330-5
pmc: PMC9669051
doi:

Substances chimiques

Calcium Carbonate H0G9379FGK
Minerals 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6990

Informations de copyright

© 2022. The Author(s).

Références

Langmuir. 2010 Feb 2;26(3):1940-8
pubmed: 19947618
Lab Chip. 2016 Mar 7;16(5):911-6
pubmed: 26830018
Nat Mater. 2008 Dec;7(12):984-91
pubmed: 18953343
Nat Commun. 2013;4:1919
pubmed: 23715278
Langmuir. 2022 Sep 20;38(37):11265-11273
pubmed: 36083285
J Phys Condens Matter. 2015 Mar 18;27(10):103102
pubmed: 25679044
Biophys J. 1979 Jun;26(3):507-26
pubmed: 262429
Nature. 2015 Mar 26;519(7544):443-5
pubmed: 25810206
Science. 2015 Jul 31;349(6247):aaa6760
pubmed: 26228157
J Cell Biol. 1964 Feb;20:199-215
pubmed: 14126869
Science. 2012 May 25;336(6084):1014-8
pubmed: 22628650
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 1):021901
pubmed: 14995485
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19702-7
pubmed: 20974928
Chemphyschem. 2009 Nov 9;10(16):2752-68
pubmed: 19816893
Nat Commun. 2019 Sep 2;10(1):3912
pubmed: 31477721
Phys Rev Lett. 2018 Aug 31;121(9):096101
pubmed: 30230887
Chem Rev. 2008 Nov;108(11):4332-432
pubmed: 19006397
Science. 2003 Feb 21;299(5610):1205-8
pubmed: 12595685
Science. 2014 Sep 5;345(6201):1158-62
pubmed: 25190792
Nature. 2020 Jan;577(7788):60-63
pubmed: 31894149

Auteurs

Felix Kohler (F)

The NJORD Centre, Department of Physics, University of Oslo, P.O. box 1048 Blindern, 0316, Oslo, Norway.
Expert Analytics, Møllergata 8, 0179, Oslo, Norway.

Olivier Pierre-Louis (O)

Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622, Villeurbanne, France.

Dag Kristian Dysthe (DK)

The NJORD Centre, Department of Physics, University of Oslo, P.O. box 1048 Blindern, 0316, Oslo, Norway. dagkd@fys.uio.no.

Articles similaires

Calcium Carbonate Sand Powders Construction Materials Materials Testing
Anthraquinones Kinetics Water Purification Adsorption Thermodynamics
1.00
Humans Pyrophosphatases Protein Conformation Molecular Dynamics Simulation Kinetics

Biofilms in modern CaCO

Mirosław Słowakiewicz, Andrzej Borkowski, Edoardo Perri et al.
1.00
Biofilms Fresh Water Calcium Carbonate Geologic Sediments Viruses

Classifications MeSH