Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents.


Journal

Molecular diversity
ISSN: 1573-501X
Titre abrégé: Mol Divers
Pays: Netherlands
ID NLM: 9516534

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 01 09 2022
accepted: 11 11 2022
medline: 13 11 2023
pubmed: 24 11 2022
entrez: 23 11 2022
Statut: ppublish

Résumé

Leishmaniasis includes a range of parasitic diseases caused by numerous types of the protozoan kinetoplastid parasite. Fungal and bacterial pathogens have led to infectious illnesses causing some main public health problem in current years. A series of dihydropyridine and tetrahydropyrimidine derivatives having fluoro, bromo, and nitro substituents at para-phenyl ring on C4 of dihydropyridine and tetrahydropyrimidine rings were synthesized. Then, anti-leishmanial and antimicrobial potencies of compounds were assessed. All compounds were synthesized via Hantzsch and Biginelli reactions. All derivatives were evaluated for their anti-leishmanial and antimicrobial activities. Moreover, docking and molecular dynamics simulation calculations of the compounds in PRT1 binding site were performed to report the results of anti-leishmanial and antimicrobial activities. Compounds 4a and 4b showed the highest anti-amastigote and anti-promastigote activities. Compound 4a revealed the highest antimicrobial activity against E. coli, P. aeruginosa, and C. albicans strains. In addition, compound 4c showed the highest activity against S. aureus. The fluoro, bromo, and nitro substituents in para-position of phenyl group at C4 of dihydropyridine and tetrahydropyrimidine moieties as well as the bulk and length of the chain linking to the ester moieties are essential for anti-leishmanial and anti-microbial activities of these derivatives. Low cytotoxicity was shown by most of derivatives against macrophages. The molecular docking studies were in agreement with in vitro assay. Moreover, hydrogen binds, RMSF, RMSD, and Rg, strongly showed the steady binding of 4a and 4b compounds in PRT1 active site.

Identifiants

pubmed: 36417095
doi: 10.1007/s11030-022-10569-4
pii: 10.1007/s11030-022-10569-4
doi:

Substances chimiques

Nifedipine I9ZF7L6G2L
monastrol 6BSM97YZ8G
Anti-Infective Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2555-2575

Subventions

Organisme : Ardabil University of Medical Sciences
ID : IR.ARUMS.REC.1398.092

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Haroon M, de Barros Dias MCH, Santos ACdS, Pereira VRA, Barros Freitas LA, Balbinot RB, Kaplum V, Nakamura CV, Alves LC, Brayner FA, Leite ACL, Akhtar T (2021) The design, synthesis, and in vitro trypanocidal and leishmanicidal activities of 1,3-thiazole and 4-thiazolidinone ester derivatives. RSC Adv 11:2487–2500. https://doi.org/10.1039/D0RA06994A
doi: 10.1039/D0RA06994A pubmed: 35424158 pmcid: 8693751
Steverding D (2017) The history of leishmaniasis. Parasit Vectors 10:82. https://doi.org/10.1186/s13071-017-2028-5
doi: 10.1186/s13071-017-2028-5 pubmed: 28202044 pmcid: 5312593
Gontijo VS, Colombo FA, Ferreira Espuri P, Freitas PG, Nunes JB, Alves LB, Veloso MP, Alves RB, Freitas RP, Marques MJ (2021) In vivo evaluation of anti-Leishmania activity of alkyltriazoles and alkylphosphocholines by oral route. Exp Parasitol 226–227:108123. https://doi.org/10.1016/j.exppara.2021.108123
doi: 10.1016/j.exppara.2021.108123 pubmed: 34144040
Kapil S, Singh PK, Silakari O (2018) An update on small molecule strategies targeting leishmaniasis. Eur J Med Chem 157:339–367. https://doi.org/10.1016/j.ejmech.2018.08.012
doi: 10.1016/j.ejmech.2018.08.012 pubmed: 30099256
Sheikhmoradi V, Saberi S, Saghaei L, Pestehchian N, Fassihi A (2018) Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands. Research in pharmaceutical sciences 13:111–120. https://doi.org/10.4103/1735-5362.223793
doi: 10.4103/1735-5362.223793 pubmed: 29606965 pmcid: 5842482
Gómez-Pérez V, Manzano JI, García-Hernández R, Castanys S, Gamarro F, Campos JM (2015) Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 89:362–369. https://doi.org/10.1016/j.ejmech.2014.10.040
doi: 10.1016/j.ejmech.2014.10.040 pubmed: 25462252
Nandikolla A, Srinivasarao S, Karan Kumar B, Murugesan S, Aggarwal H, Major LL, Smith TK, Chandra Sekhar KVG (2020) Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Adv 10:38328–38343. https://doi.org/10.1039/D0RA07881F
doi: 10.1039/D0RA07881F pubmed: 35517538 pmcid: 9057266
Mendes EP, Goulart CM, Chaves OA, Faiões VDS, Canto-Carvalho MM, Machado GC, Torres-Santos EC, Echevarria A (2019) Evaluation of novel chalcone-thiosemicarbazones derivatives as potential anti-leishmania amazonensis agents and its HSA binding studies. Biomolecules. https://doi.org/10.3390/biom9110643
doi: 10.3390/biom9110643 pubmed: 31652866 pmcid: 6920794
Zhang L, Feng XZ, Xiao ZQ, Fan GR, Chen SX, Liao SL, Luo H, Wang ZD (2021) Design, synthesis, antibacterial, antifungal and anticancer evaluations of novel β-pinene quaternary ammonium salts. Int J Mol Sci. https://doi.org/10.3390/ijms222011299
doi: 10.3390/ijms222011299 pubmed: 35008885 pmcid: 8745508
Meşeli T, Doğan ŞD, Gündüz MG, Kökbudak Z, Skaro Bogojevic S, Noonan T, Vojnovic S, Wolber G, Nikodinovic-Runic J (2021) Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J Chem 45:8166–8177. https://doi.org/10.1039/D1NJ00150G
doi: 10.1039/D1NJ00150G
Sapozhnikov SV, Sabirova AE, Shtyrlin NV, Druk AY, Agafonova MN, Chirkova MN, Kazakova RR, Grishaev DY, Nikishova TV, Krylova ES, Nikitina EV, Kayumov AR, Shtyrlin YG (2021) Design, synthesis, antibacterial activity and toxicity of novel quaternary ammonium compounds based on pyridoxine and fatty acids. Eur J Med Chem 211:113100. https://doi.org/10.1016/j.ejmech.2020.113100
doi: 10.1016/j.ejmech.2020.113100 pubmed: 33385851
Liu HX, Ma DL, Cui G, Zhang Y, Xue FQ (2021) Design, synthesis and antibacterial activities of pleuromutilin derivatives. J Asian Nat Prod Res 23:123–137. https://doi.org/10.1080/10286020.2020.1713764
doi: 10.1080/10286020.2020.1713764 pubmed: 32024387
Bhakhar KA, Sureja DK, Dhameliya TM (2022) Synthetic account of indoles in search of potential anti-mycobacterial agents: a review and future insights. J Mol Struct 1248:131522. https://doi.org/10.1016/j.molstruc.2021.131522
doi: 10.1016/j.molstruc.2021.131522
Dhameliya TM, Chudasma SJ, Patel TM, Dave BP (2022) A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol Diversity 26:2967–2980. https://doi.org/10.1007/s11030-021-10375-4
doi: 10.1007/s11030-021-10375-4
Dhameliya TM, Bhakhar KA, Gajjar ND, Patel KA, Devani AA, Hirani RV (2022) Recent advancements and developments in search of anti-tuberculosis agents: a quinquennial update and future directions. J Mol Struct 1248:131473. https://doi.org/10.1016/j.molstruc.2021.131473
doi: 10.1016/j.molstruc.2021.131473
Sepehri S, Sanchez HP, Fassihi A (2015) Hantzsch-Type dihydropyridines and Biginelli-type tetra-hydropyrimidines: a review of their chemotherapeutic activities. J Pharm Pharm Sci 18:1–52. https://doi.org/10.18433/j3q01v
doi: 10.18433/j3q01v pubmed: 25877440
Abdolmohammadi S, Mirza B, Vessally E (2019) Immobilized TiO2 nanoparticles on carbon nanotubes: an efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Adv 9:41868–41876. https://doi.org/10.1039/C9RA09031B
doi: 10.1039/C9RA09031B pubmed: 35557875 pmcid: 9092645
Saeedi B, Abdolmohammadi S, Mirjafari Z, Kia-Kojoori R (2020) Nickel(II) chromite nanoparticles promoted efficient synthesis of novel [1]benzopyrano[4,3-b]pyridines in aqueous media. Monatshefte für Chemie—Chem Month 151:773–780. https://doi.org/10.1007/s00706-020-02595-5
doi: 10.1007/s00706-020-02595-5
Abdolmohammadi S, Dahi-Azar S, Mohammadnejad M, Hosseinian A (2017) A simple and efficient synthesis of 4-arylacridinediones and 6-aryldiindeno[1,2-b:2,1-e]pyridinediones using CuI nanoparticles as catalyst under solvent-free conditions. Comb Chem High Throughput Screen 20:773–780. https://doi.org/10.2174/1386207320666171002123027
doi: 10.2174/1386207320666171002123027 pubmed: 28969547
Abdolmohammadi S, Hossaini Z, Poor Heravi MR (2022) PANI-Fe3O4@ZnO nanocomposite as magnetically recoverable organometallic nanocatalyst promoted synthesis of new Azo chromene dyes and evaluation of their antioxidant and antimicrobial activities. Mol Diversity 26:1983–1993. https://doi.org/10.1007/s11030-021-10309-0
doi: 10.1007/s11030-021-10309-0
Chaghari-Farahani F, Abdolmohammadi S, Kia-Kojoori R (2020) A PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Adv 10:15614–15621. https://doi.org/10.1039/D0RA01978J
doi: 10.1039/D0RA01978J pubmed: 35495442 pmcid: 9052377
Abdolmohammadi S, Karimpour S (2016) Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions. Chin Chem Lett 27:114–118. https://doi.org/10.1016/j.cclet.2015.08.014
doi: 10.1016/j.cclet.2015.08.014
Rabiei A, Abdolmohammadi S, Shafaei F (2017) A green approach for an efficient preparation of 2, 4-diamino-6-aryl-5-pyrimidinecarbonitriles using a TiO2–SiO2 nanocomposite catalyst under solvent-free conditions. Zeitschrift für Naturforschung B 72:241–247
doi: 10.1515/znb-2016-0219
Fakheri-Vayeghan S, Abdolmohammadi S, Kia Kojoori R (2018) An expedient synthesis of 6-amino-5-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl]-1,3-dimethyl-2,4,6(1H,3H)-pyrimidinedione derivatives using Fe3O4@TiO2 nanocomposite as an efficient, magnetically separable, and reusable catalyst. Zeitschrift für Naturforschung B. https://doi.org/10.1515/znb-2018-0030
doi: 10.1515/znb-2018-0030
Khalilian S, Abdolmohammadi S, Nematolahi F (2017) An eco-friendly and highly efficient synthesis of pyrimidinones using a TiO2-CNTs nanocomposite catalyst. Lett Org Chem 14:361–367. https://doi.org/10.2174/1570178614666170321113926
doi: 10.2174/1570178614666170321113926
Abdolmohammadi S, Afsharpour M (2015) ChemInform abstract: an operationally simple green procedure for the synthesis of dihydropyrimido[4,5-d]pyrimidinetriones using CuI nanoparticles as a highly efficient catalyst. Zeitschrift für Naturforschung B. https://doi.org/10.1515/znb-2014-0207
doi: 10.1515/znb-2014-0207
Kiani M, Abdolmohammadi S, Janitabar-Darzi S (2017) Fast and efficient synthesis of chromeno[d]pyrimidinediones catalysed by a TiO2-SiO2 nanocomposite in aqueous media. J Chem Res 41:337–340. https://doi.org/10.3184/174751917X14949407124706
doi: 10.3184/174751917X14949407124706
Gomha SM, Edrees MM, Muhammad ZA, Kheder NA, Abu- Melha S, Saad AM (2022) Synthesis, characterization, and antimicrobial evaluation of some new 1,4-dihydropyridines-1,2,4-triazole hybrid compounds. Polycyclic Aromat Compd 42:173–185. https://doi.org/10.1080/10406638.2020.1720751
doi: 10.1080/10406638.2020.1720751
Mishra AP, Bajpai A, Rai AK (2019) 1,4-dihydropyridine: a dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev Med Chem 19:1219–1254. https://doi.org/10.2174/1389557519666190425184749
doi: 10.2174/1389557519666190425184749 pubmed: 31735158
Reddy MU, Reddy MCS, Chakravartula V (2018) Synthesis and anti-bacterial activity of 1,4-dihydropyridine derivatives embedded with chromone and dimedone based hybrids. Asian J Res Chem 11:55–60
doi: 10.5958/0974-4150.2018.00012.3
Abu-Melha H (2013) Synthesis, antibacterial and antifungal evaluation of novel 1,4-dihydropyridine derivatives. Spectrochim Acta A Mol Biomol Spectrosc 113:115–122. https://doi.org/10.1016/j.saa.2012.12.069
doi: 10.1016/j.saa.2012.12.069 pubmed: 23732618
Ahamed A, Arif IA, Mateen M, Surendra Kumar R, Idhayadhulla A (2018) Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1,4-dihydropyridine derivatives. Saudi J Biol Sci 25:1227–1235. https://doi.org/10.1016/j.sjbs.2018.03.001
doi: 10.1016/j.sjbs.2018.03.001 pubmed: 30174527 pmcid: 6117288
Malani A, Makwana A, Monapara J, Ahmad I, Patel H, Desai N (2021) Synthesis, molecular docking, DFT study, and in vitro antimicrobial activity of some 4-(biphenyl-4-yl)-1,4-dihydropyridine and 4-(biphenyl-4-yl)pyridine derivatives. J Biochem Mol Toxicol 35:e22903. https://doi.org/10.1002/jbt.22903
doi: 10.1002/jbt.22903 pubmed: 34459052
Foroughifar N, Karimi Beromi S, Pasdar H, Shahi M (2017) Synthesis of some new tetrahydropyrimidine derivatives as possible antibacterial agents. Iran J Pharm Res 16:596–601
pubmed: 28979312 pmcid: 5603867
Desai NC, Vaghani HV, Patel BY, Karkar TJ (2018) Synthesis and antimicrobial activity of fluorine containing pyrazole-clubbed dihydropyrimidinones. Indian J Pharm Sci 80:242–252
doi: 10.4172/pharmaceutical-sciences.1000351
Razzaghi-Asl N, Kamrani-Moghadam M, Farhangi B, Vahabpour R, Zabihollahi R, Sepehri S (2019) Design, synthesis and evaluation of cytotoxic, antimicrobial, and anti-HIV-1 activities of new 1,2,3,4-tetrahydropyrimidine derivatives. Res Pharm Sci 14:155–166. https://doi.org/10.4103/1735-5362.253363
doi: 10.4103/1735-5362.253363 pubmed: 31620192 pmcid: 6791171
Mirzayi S, Kakanj M, Sepehri S, Alavinejad B, Bakherad Z, Ghazi-Khansari M (2021) Design and synthesis of tetrahydropyrimidinone(thione)-triazole hybrid scaffolds and evaluation of their biological activities. Phosphorus Sulfur Silicon Relat Elem 196:1109–1116. https://doi.org/10.1080/10426507.2021.1986499
doi: 10.1080/10426507.2021.1986499
Razzaghi-Asl N, Sepehri S, Ebadi A, Karami P, Nejatkhah N, Johari-Ahar M (2020) Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 24:525–569. https://doi.org/10.1007/s11030-019-09953-4
doi: 10.1007/s11030-019-09953-4 pubmed: 31028558
Kumar P, Kumar A, Verma SS, Dwivedi N, Singh N, Siddiqi MI, Tripathi RP, Dube A, Singh N (2008) Leishmania donovani pteridine reductase 1: biochemical properties and structure-modeling studies. Exp Parasitol 120:73–79. https://doi.org/10.1016/j.exppara.2008.05.005
doi: 10.1016/j.exppara.2008.05.005 pubmed: 18617167
Saudi MNS, El-Semary MMA, Elbayaa RY, Jaeda MI, Eissa MM, Amer EI, Baddour NM (2012) Synthesis and biological evaluation of a novel class as antileishmanial agent. Med Chem Res 21:257–267. https://doi.org/10.1007/s00044-010-9532-x
doi: 10.1007/s00044-010-9532-x
Reimão JQ, Scotti MT, Tempone AG (2010) Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines: in vitro evaluation and structure-activity relationship study. Bioorg Med Chem 18:8044–8053. https://doi.org/10.1016/j.bmc.2010.09.015
doi: 10.1016/j.bmc.2010.09.015 pubmed: 20934347
Kaur J, Sundar S, Singh N (2010) Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J Antimicrob Chemother 65:1742–1748. https://doi.org/10.1093/jac/dkq189
doi: 10.1093/jac/dkq189 pubmed: 20519355
Jeddi B, Saberi S, Menéndez JC, Sepehri S (2021) Synthesis and biological evaluation of tetrahydropyrimidine and dihydropyridine derivatives against leishmania major. Acta Parasitol. https://doi.org/10.1007/s11686-021-00457-6
doi: 10.1007/s11686-021-00457-6 pubmed: 34279776
Rezaei A-R, Saberi S, Sepehri S (2022) Synthesis, antileishmanial activity and molecular docking study of a series of dihydropyridine derivatives. Polycyc Arom Compounds. https://doi.org/10.1080/10406638.2022.2092877
doi: 10.1080/10406638.2022.2092877
Mohammadi-Ghalehbin B, Sepehri S, Nejatkhah N, Safari S, Hosseinali Z, Sabour S, Razzaghi-Asl N (2022) Synthesis, antileishmanial activity and molecular docking study of new 3,4-dihydropyrimidinones/thiones. Pharm Chem J 55:1050–1056. https://doi.org/10.1007/s11094-021-02536-4
doi: 10.1007/s11094-021-02536-4
Bansod PS, Jadhav SB (2022) Design, molecular docking studies and ADMET prediction of chalcones of indole-benzenesulfonyl derivatives as thioredoxin inhibitor for anticancer activity. J Comput Biophys Chem. https://doi.org/10.1142/s2737416522500144
doi: 10.1142/s2737416522500144
Chandrasekaran S, Veronica J, Gundampati RK, Sundar S, Maurya R (2016) Exploring the inhibitory activity of Withaferin-A against Pteridine reductase-1 of L. donovani. J Enzyme Inhib Med Chem 31:1029–1037. https://doi.org/10.3109/14756366.2015.1088841
doi: 10.3109/14756366.2015.1088841 pubmed: 26406482
Shraddha P, Rakesh S, Devender P (2020) New benzimidazole derivatives as inhibitors of Pteridine reductase 1: design, molecular docking study and ADMET prediction. J Appl Pharma Sci. https://doi.org/10.7324/JAPS.2020.10904
doi: 10.7324/JAPS.2020.10904
Di Pisa F, Landi G, Dello Iacono L, Pozzi C, Borsari C, Ferrari S, Santucci M, Santarem N, Cordeiro-da-Silva A, Moraes CB, Alcantara LM, Fontana V, Freitas-Junior LH, Gul S, Kuzikov M, Behrens B, Pöhner I, Wade RC, Costi MP, Mangani S (2017) Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules. https://doi.org/10.3390/molecules22030426
doi: 10.3390/molecules22030426 pubmed: 28282886 pmcid: 6155272
Ganesan A, Coote ML, Barakat K (2017) Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 22:249–269. https://doi.org/10.1016/j.drudis.2016.11.001
doi: 10.1016/j.drudis.2016.11.001 pubmed: 27890821
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
doi: 10.1016/j.ddtec.2004.11.007 pubmed: 24981612
Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n
doi: 10.1021/jm020017n pubmed: 12036371
Asham H, Bohlooli S, Dostkamel D, Rezvanpoor S, Sepehri S (2021) Design, synthesis, and biological screening for cytotoxic activity of monastrol analogues. Polycyc Arom Compounds. https://doi.org/10.1080/10406638.2021.1913424
doi: 10.1080/10406638.2021.1913424
Keivanloo A, Fakharian M, Sepehri S (2020) 1,2,3-Triazoles based 3-substituted 2-thioquinoxalines: synthesis, anti-bacterial activities, and molecular docking studies. J Mol Struct 1202:127262. https://doi.org/10.1016/j.molstruc.2019.127262
doi: 10.1016/j.molstruc.2019.127262
Sepehri S, Hashemidanesh N, Mahnam K, Asham H (2021) Qualitative and quantitative analysis of anti-viral compounds against SARS-CoV-2 protease enzyme by molecular dynamics simulation and MM/PBSA method. Pharm Sci 27:S122–S134. https://doi.org/10.34172/ps.2021.4
doi: 10.34172/ps.2021.4
Bhakhar KA, Gajjar ND, Bodiwala KB, Sureja DK, Dhameliya TM (2021) Identification of anti-mycobacterial agents against mmpL3: virtual screening, ADMET analysis and MD simulations. J Mol Struct 1244:130941. https://doi.org/10.1016/j.molstruc.2021.130941
doi: 10.1016/j.molstruc.2021.130941

Auteurs

Mahdieh Khalilzadeh (M)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Sedigheh Saberi (S)

Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Ghazal Noori (G)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Mostafa Vaziri (M)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Saghi Sepehri (S)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran. sepehri.saghi@yahoo.com.
Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. sepehri.saghi@yahoo.com.

Hamid Bakherad (H)

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.

Mahsa Esmaeili-Fallah (M)

Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Sahar Mirzayi (S)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Ghazaleh Farhadi (G)

Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Female Biofilms Animals Lactobacillus Mice

Classifications MeSH