Simultaneous quantification of tryptophan metabolites by liquid chromatography tandem mass spectrometry during early human pregnancy.


Journal

Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306

Informations de publication

Date de publication:
23 02 2023
Historique:
received: 10 08 2022
accepted: 22 11 2022
pubmed: 3 12 2022
medline: 28 1 2023
entrez: 2 12 2022
Statut: epublish

Résumé

In this study we describe the development and validation of a liquid chromatography mass spectrometry method (LC-MS/MS) to quantify five tryptophan (TRP) metabolites within the kynurenine- and serotonin pathway and apply the method to serum samples of women in the first trimester of pregnancy. A secondary aim was to investigate the correlation between body mass index (BMI) and the five analytes. A LC-MS/MS was developed for the analysis of TRP, kynurenine (KYN), 5-hydroxytryptophan (5-HTP), hydroxytryptamine (5-HT), and 5-hydroxyindole acetic acid (5-HIAA). Serum samples (n=374) were analyzed of pregnant women (median gestational age: 8 ± 2 weeks) participating in a subcohort of the Rotterdam Periconceptional Cohort (Predict study). The LC-MS/MS method provided satisfactory separation of the five analytes (7 min run). For all analytes R The LC-MS/MS method is able to accurately quantify kynurenine- and serotonin pathway metabolites in pregnant women, providing an opportunity to investigate the role of the TRP metabolism in the (patho)physiology of pregnancy.

Identifiants

pubmed: 36458576
pii: cclm-2022-0790
doi: 10.1515/cclm-2022-0790
doi:

Substances chimiques

Kynurenine 343-65-7
Tryptophan 8DUH1N11BX
Serotonin 333DO1RDJY
5-Hydroxytryptophan C1LJO185Q9
Hydroxyindoleacetic Acid 54-16-0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

442-451

Informations de copyright

© 2022 the author(s), published by De Gruyter, Berlin/Boston.

Références

Alkhalaf, LM, Ryan, KS. Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. Chem Biol 2015;22:317–28. https://doi.org/10.1016/j.chembiol.2015.02.005 .
doi: 10.1016/j.chembiol.2015.02.005
Roth, W, Zadeh, K, Vekariya, R, Ge, Y, Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 2021;22:1–23. https://doi.org/10.3390/ijms22062973 .
doi: 10.3390/ijms22062973
Broekhuizen, M, Klein, T, Hitzerd, E, de Rijke, YB, Schoenmakers, S, Sedlmayr, P, et al.. l-tryptophan-induced vasodilation is enhanced in preeclampsia: studies on its uptake and metabolism in the human placenta. Hypertension 2020;76:184–94. https://doi.org/10.1161/hypertensionaha.120.14970 .
doi: 10.1161/hypertensionaha.120.14970
Badawy, AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 2017;10:1–20. https://doi.org/10.1177/1178646917691938 .
doi: 10.1177/1178646917691938
Tóth, F, Cseh, EK, Vécsei, L. Natural molecules and neuroprotection: kynurenic acid, pantethine and α-lipoic acid. Int J Mol Sci 2021;22:1–25. https://doi.org/10.3390/ijms22010403 .
doi: 10.3390/ijms22010403
Gao, K, Mu, CL, Farzi, A, Zhu, WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 2020;11:709–23. https://doi.org/10.1093/advances/nmz127 .
doi: 10.1093/advances/nmz127
Gumusoglu, S, Scroggins, S, Vignato, J, Santillan, D, Santillan, M. The serotonin-immune axis in preeclampsia. Curr Hypertens Rep 2021;23:37. https://doi.org/10.1007/s11906-021-01155-4 .
doi: 10.1007/s11906-021-01155-4
Keaton, SA, Heilman, P, Bryleva, EY, Madaj, Z, Krzyzanowski, S, Grit, J, et al.. Altered tryptophan catabolism in placentas from women with pre-eclampsia. Int J Tryptophan Res 2019;12:1–8. https://doi.org/10.1177/1178646919840321 .
doi: 10.1177/1178646919840321
Whiley, L, Nye, LC, Grant, I, Andreas, N, Chappell, KE, Sarafian, MH, et al.. Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasma-application to clinical and epidemiology cohorts. Anal Chem 2019;91:5207–16. https://doi.org/10.1021/acs.analchem.8b05884 .
doi: 10.1021/acs.analchem.8b05884
Tömösi, F, Kecskeméti, G, Cseh, EK, Szabó, E, Rajda, C, Kormány, R, et al.. A validated UHPLC-MS method for tryptophan metabolites: application in the diagnosis of multiple sclerosis. J Pharm Biomed Anal 2020;185:1–12. https://doi.org/10.1016/j.jpba.2020.113246 .
doi: 10.1016/j.jpba.2020.113246
Zhu, W, Stevens, AP, Dettmer, K, Gottfried, E, Hoves, S, Kreutz, M, et al.. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2011;401:3249–61. https://doi.org/10.1007/s00216-011-5436-y .
doi: 10.1007/s00216-011-5436-y
Sadok, I, Jędruchniewicz, K, Rawicz-Pruszyński, K, Staniszewska, M. UHPLC-ESI-MS/MS quantification of relevant substrates and metabolites of the kynurenine pathway present in serum and peritoneal fluid from gastric cancer patients-method development and validation. Int J Mol Sci 2021;22:1–21. https://doi.org/10.3390/ijms22136972 .
doi: 10.3390/ijms22136972
Hu, LJ, Li, XF, Hu, JQ, Ni, XJ, Lu, HY, Wang, JJ, et al.. A simple HPLC-MS/MS method for determination of tryptophan, kynurenine and kynurenic acid in human serum and its potential for monitoring antidepressant therapy. J Anal Toxicol 2017;41:37–44. https://doi.org/10.1093/jat/bkw071 .
doi: 10.1093/jat/bkw071
Takahashi, S, Iizuka, H, Kuwabara, R, Naito, Y, Sakamoto, T, Miyagi, A, et al.. Determination of l-tryptophan and l-kynurenine derivatized with (R)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2, 1, 3-benzoxadiazole by LC-MS/MS on a triazole-bonded column and their quantification in human serum. Biomed Chromatogr 2016;30:1481–6. https://doi.org/10.1002/bmc.3709 .
doi: 10.1002/bmc.3709
Favennec, M, Hennart, B, Caiazzo, R, Leloire, A, Yengo, L, Verbanck, M, et al.. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity 2015;23:2066–74. https://doi.org/10.1002/oby.21199 .
doi: 10.1002/oby.21199
Rousian, M, Schoenmakers, S, Eggink, AJ, Gootjes, DV, Koning, AH, Koster, MP, et al.. Cohort profile update: the Rotterdam periconceptional cohort and embryonic and fetal measurements using 3D ultrasound and virtual reality techniques. Int J Epidemiol 2021;50:1426–7. https://doi.org/10.1093/ije/dyab030 .
doi: 10.1093/ije/dyab030
Steegers-Theunissen, RP, Verheijden-Paulissen, JJ, van Uitert, EM, Wildhagen, MF, Exalto, N, Koning, AH, et al.. Cohort profile: the Rotterdam periconceptional cohort (Predict study). Int J Epidemiol 2016;45:374–81. https://doi.org/10.1093/ije/dyv147 .
doi: 10.1093/ije/dyv147
Sha, Q, Madaj, Z, Keaton, S, Escobar Galvis, ML, Smart, L, Krzyzanowski, S, et al.. Cytokines and tryptophan metabolites can predict depressive symptoms in pregnancy. Transl Psychiatry 2022;12:1–8. https://doi.org/10.1038/s41398-022-01801-8 .
doi: 10.1038/s41398-022-01801-8
Nilsen, RM, Bjørke-Monsen, AL, Midttun, O, Nygård, O, Pedersen, ER, Ulvik, A, et al.. Maternal tryptophan and kynurenine pathway metabolites and risk of preeclampsia. Obstet Gynecol 2012;119:1243–50. https://doi.org/10.1097/aog.0b013e318255004e .
doi: 10.1097/aog.0b013e318255004e
Cengiz, H, Dagdeviren, H, Caypinar, SS, Kanawati, A, Yildiz, S, Ekin, M. Plasma serotonin levels are elevated in pregnant women with hyperemesis gravidarum. Arch Gynecol Obstet 2015;291:1271–6. https://doi.org/10.1007/s00404-014-3572-2 .
doi: 10.1007/s00404-014-3572-2
Boulet, L, Faure, P, Flore, P, Montérémal, J, Ducros, V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry. J Chromatogr B: Anal Technol Biomed Life Sci 2017;1054:36–43. https://doi.org/10.1016/j.jchromb.2017.04.010 .
doi: 10.1016/j.jchromb.2017.04.010
Comai, S, Bertazzo, A, Carretti, N, Podfigurna-Stopa, A, Luisi, S, Costa, CV. Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea. Int J Tryptophan Res 2010;3:69–75. https://doi.org/10.4137/ijtr.s3804 .
doi: 10.4137/ijtr.s3804
van Faassen, M, Bouma, G, de Hosson, LD, Peters, MA, Kats-Ugurlu, G, de Vries, EG, et al.. Quantitative profiling of platelet-rich plasma indole markers by direct-matrix derivatization combined with LC-MS/MS in patients with neuroendocrine tumors. Clin Chem 2019;65:1388–96. https://doi.org/10.1373/clinchem.2019.305359 .
doi: 10.1373/clinchem.2019.305359
Carretti, N, Bertazzo, A, Comai, S, Costa, CV, Allegri, G, Petraglia, F. Serum tryptophan and 5-hydroxytryptophan at birth and during post-partum days. Adv Exp Med Biol 2003;527:757–60.
Chace, DH, Barr, JR, Duncan, MW, Matern, D, Morris, MR, Palmer-Toy, DE, et al.. Mass spectrometry in the clinical laboratory: general principles and guidance; approved guideline . Clinical and Laboratory Standards Institute; 2007. 1–97 pp.
Matuszewski, BK, Constanzer, ML, Chavez-Eng, CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 2003;75:3019–30. https://doi.org/10.1021/ac020361s .
doi: 10.1021/ac020361s
Badawy, AA. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 2015;35:1–16. https://doi.org/10.1042/bsr20150197 .
doi: 10.1042/bsr20150197
Saltiel, AR, Olefsky, JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 2017;127:1–4. https://doi.org/10.1172/jci92035 .
doi: 10.1172/jci92035
Badawy, AA. Plasma free tryptophan revisited: what you need to know and do before measuring it. J Psychopharmacol 2010;24:809–15. https://doi.org/10.1177/0269881108098965 .
doi: 10.1177/0269881108098965
Groer, M, Fuchs, D, Duffy, A, Louis-Jacques, A, D’Agata, A, Postolache, TT. Associations among obesity, inflammation, and tryptophan catabolism in pregnancy. Biol Res Nurs 2018;20:284–91. https://doi.org/10.1177/1099800417738363 .
doi: 10.1177/1099800417738363
Steegers-Theunissen, RP, Twigt, J, Pestinger, V, Sinclair, KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 2013;19:640–55. https://doi.org/10.1093/humupd/dmt041 .
doi: 10.1093/humupd/dmt041

Auteurs

Sofie K M van Zundert (SKM)

Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Pieter H Griffioen (PH)

Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Lenie van Rossem (L)

Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Sten P Willemsen (SP)

Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Yolanda B de Rijke (YB)

Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Ron H N van Schaik (RHN)

Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Régine P M Steegers-Theunissen (RPM)

Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Mina Mirzaian (M)

Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH