Distinct glycoconjugate cell surface structures make the pelagic diatom Thalassiosira rotula an attractive habitat for bacteria.
attachment
carbohydrates
colonization
confocal laser scanning microscopy
diatom
lectin
phycosphere
thread
Journal
Journal of phycology
ISSN: 1529-8817
Titre abrégé: J Phycol
Pays: United States
ID NLM: 9882935
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
12
08
2022
accepted:
14
11
2022
medline:
14
4
2023
pubmed:
7
12
2022
entrez:
6
12
2022
Statut:
ppublish
Résumé
Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.
Substances chimiques
Fucose
28RYY2IV3F
Glycoconjugates
0
Lectins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
309-322Informations de copyright
© 2022 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.
Références
Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, R. L. et al. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98-101.
Bakenhus, I., Dlugosch, L., Billerbeck, S., Giebel, H.-A., Milke, F. & Simon, M. 2017. Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea - roseobacters are the most active component. Front. Microbiol. 8:1771.
Bakenhus, I., Voget, S., Poehlein, A., Brinkhoff, T., Daniel, R. & Simon, M. 2018. Genome sequence of Planktotalea frisia type strain (SH6-1T), a representative of the Roseobacter group isolated from the North Sea during a phytoplankton bloom. Stand Genomic Sci. 13:7.
Baker, M. D., Wolanin, P. M. & Stock, J. B. 2006. Signal transduction in bacterial chemotaxis. BioEssays News Rev. Mol. Cell. Dev. Biol. 28:9-22.
Bauer, M., Kube, M., Teeling, H., Richter, M., Lombardot, T., Allers, E., Würdemann, C. A. et al. 2006. Whole genome analysis of the marine Bacteroidetes'Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8:2201-13.
Becker, S., Tebben, J., Coffinet, S., Wiltshire, K., Iversen, M. H., Harder, T., Hinrichs, K. U. & Hehemann, J. H. 2020. Laminarin is a major molecule in the marine carbon cycle. Proc. Natl. Acad. Sci. USA 117:6599-607.
Bell, W. & Mitchell, R. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143:265-77.
Bennke, C. M., Neu, T. R., Fuchs, B. M. & Amann, R. 2013. Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Syst. Appl. Microbiol. 36:417-25.
Biebl, H., Allgaier, M., Tindall, B. J., Koblizek, M., Lünsdorf, H., Pukall, R. & Wagner-Döbler, I. 2005. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int. J. Syst. Evol. Microbiol. 55:1089-96.
Bosak, S., Šupraha, L., Nanjappa, D., Kooistra, W. H. C. F. & Sarno, D. 2015. Morphology and phylogeny of four species from the genus Bacteriastrum (Bacillariophyta). Phycologia. 54:130-48.
Boyd, P. W., Rynearson, T. A., Armstrong, E. A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D. A. et al. 2013. Marine phytoplankton temperature versus growth responses from polar to tropical waters--outcome of a scientific community-wide study. PloS ONE 8:e63091.
Chelius, M. K. & Triplett, E. W. 2001. The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb. Ecol. 41:252-63.
Chepurnov, V. A., Mann, D. G., Sabbe, K. & Vyverman, W. 2004. Experimental studies on sexual reproduction in diatoms. Int. Rev. Cytol. 237:91-154.
Cleve, P. T. 1873. On diatoms from the Arctic Sea. Bihang till Kongliga Svenska Vetenskaps-Akademiens Handlingar 1:1-28 4 pls.
Cooper, M. B., Kazamia, E., Helliwell, K. E., Kudahl, U. J., Sayer, A., Wheeler, G. L. & Smith, A. G. 2019. Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J. 13:334-45.
Cox, E. J. 2014. Diatom identification in the face of changing species concepts and evidence of phenotypic plasticity. J. Micropalaeontology 33:111-20.
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90-3.
Cruz-López, R. & Maske, H. 2016. The Vitamin B1 and B12 required by the marine dinoflagellate Lingulodinium polyedrum can be provided by its associated bacterial community in culture. Front. Microbiol. 7:560.
Durham, B. P., Sharma, S., Luo, H., Smith, C. B., Amin, S. A., Bender, S. J., Dearth, S. P. et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112:453-7.
Durkin, C. A., Mock, T. & Armbrust, E. V. 2009. Chitin in diatoms and its association with the cell wall. Eukaryot. Cell 8:1038-50.
Falkowski, P. G., Barber, R. T. & Smetacek, V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-6.
Francis, T. B., Bartosik, D., Sura, T., Sichert, A., Hehemann, J. H., Markert, S., Schweder, T., Fuchs, B. M., Teeling, H., Amann, R. I. & Becher, D. 2021. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 15:2336-50.
Fryxell, G. A. 1975. Morphology, taxonomy, and distribution of selected diatom species of Thalassiosira Cleve in the Gulf of Mexico and Antarctic waters. Ph.D. Thesis. Texas A & M University, Austin. Available At: https://www.proquest.com/openview/71f3f25b4072cc403912a3e8220b849c/1 (last accessed March 22, 2022).
Fujihashi, M., Peapus, D. H., Kamiya, N., Nagata, Y. & Miki, K. 2003. Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry 42:11093-9.
Furusawa, G., Yoshikawa, T., Yasuda, A. & Sakata, T. 2003. Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can. J. Microbiol. 49:92-100.
Gómez-Pereira, P. R., Fuchs, B. M., Alonso, C., Oliver, M. J., van Beusekom, J. E. E. & Amann, R. 2010. Distinct flavobacterial communities in contrasting water masses of the north Atlantic Ocean. ISME J. 4:472-87.
Grant, M. A., Kazamia, E., Cicuta, P. & Smith, A. G. 2014. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J. 8:1418-27.
Grossart, H. P., Czub, G. & Simon, M. 2006. Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ. Microbiol. 8:1074-84.
Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. 2005. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7:860-73.
Grossart, H. P. & Simon, M. 2007. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47:163-76.
Guillard, R. R. L. 1975. Culture of Phytoplankton for Feeding Marine Invertebrates. In Smith, W. L. & Chanley, M. H. [Eds.] Culture of Marine Invertebrate Animals: Proceedings - 1st Conference on Culture of Marine Invertebrate Animals Greenport. Springer, Boston, MA, pp. 29-60.
Hahnke, S., Brock, N. L., Zell, C., Simon, M., Dickschat, J. S. & Brinkhoff, T. 2013b. Physiological diversity of Roseobacter clade bacteria co-occurring during a phytoplankton bloom in the North Sea. Syst. Appl. Microbiol. 36:39-48.
Hahnke, S., Sperling, M., Langer, T., Wichels, A., Gerdts, G., Beardsley, C., Brinkhoff, T. & Simon, M. 2013a. Distinct seasonal growth patterns of the bacterium Planktotalea frisia in the North Sea and specific interaction with phytoplankton algae. FEMS Microbiol. Ecol. 86:185-99.
Hahnke, S., Tindall, B. J., Schumann, P., Sperling, M., Brinkhoff, T. & Simon, M. 2012. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int. J. Syst. Evol. Microbiol. 62:1619-24.
Harrison, P. J., Waters, R. E. & Taylor, F. J. R. 1980. A broad spectrum artificial sea water medium for coastal and open oceanphytoplankton1. J. Phycol. 16:28-35.
Hasle, G. R. 1971. Morphologic variability in fasciculated diatoms as exemplified by Thalassiosira tumida (Janisch) Hasle, comb. nov. Biol. Antarct. Seas IV Antarct. Res. Ser. 17:313-33.
Hasle, G. R. & Fryxell, G. A. 1977. The genus Thalassiosira: Some species with a linear areola array. In Simonsen, R. [Ed.] Proceedings of the Fourth Symposium on Recent and Fossil Marine Diatoms. Beihefte zur Nova Hedwigia, Oslo, pp. 15-66.
Haug, A. & Myklestad, S. 1976. Polysaccharides of marine diatoms with special reference to Chaetoceros species. Mar. Biol. 34:217-22.
Heal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W., Hmelo, L. R., Moffett, J. W., Devol, A. H., Armbrust, E. V., Stahl, D. A. & Ingalls, A. E. 2017. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc. Natl. Acad. Sci. USA 114:364-9.
Herth, W. & Barthlott, W. 1979. The site of β-chitin fibril formation in centric diatoms. I. Pores and fibril formation. J. Ultrastruct. Res. 68:6-15.
Herth, W. & Zugenmaier, P. 1977. Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica (Algae). J. Ultrastruct. Res. 61:230-9.
Hoppenrath, M., Beszteri, B., Drebes, G., Halliger, H., Van Beusekom, J. E. E., Janisch, S. & Wiltshire, K. H. 2007. Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German Bight) and Sylt (North Frisian Wadden Sea) - a first approach to assessing diversity. Eur. J. Phycol. 42:271-88.
Huang, G., Vidal-Melgosa, S., Sichert, A., Becker, S., Fang, Y., Niggemann, J., Iversen, M. H., Cao, Y. & Hehemann, J. H. 2021. Secretion of sulfated fucans by diatoms may contribute to marine aggregate formation. Limnol. Oceanogr. 66:3768-82.
Isaac, A., Francis, B., Amann, R. I. & Amin, S. A. 2021. Tight adherence (Tad) pilus genes indicate putative niche differentiation in phytoplankton bloom associated Rhodobacterales. Front. Microbiol. 12:718297.
Kabisch, A., Otto, A., König, S., Becher, D., Albrecht, D., Schüler, M., Teeling, H., Amann, R. I. & Schweder, T. 2014. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes “Gramella forsetii” KT0803. ISME J. 8:1492-502.
Kaczmarska, I., Ehrman, J. M., Bates, S. S., Green, D. H., Léger, C. & Harris, J. 2005. Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4:725-41.
Kaku, H., Van Damme, E. J., Peumans, W. J. & Goldstein, I. J. 1990. Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys. 279:298-304.
Lane, D. J. 1991. 16 S/23 S rRNA Sequencing. In Stackebrandt, E. & Goodfellow, M. [Eds.] Nucleic Acid Techniques in Bacterial Systematic. John Wiley and Sons, New York, pp. 115-75.
Li, Y., Lei, X., Zhu, H., Zhang, H., Guan, C., Chen, Z., Zheng, W., Fu, L. & Zheng, T. 2016. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci. Rep. 6:21984.
Lunau, M., Lemke, A., Walther, K., Martens-Habbena, W. & Simon, M. 2005. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ. Microbiol. 7:961-8.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P. et al. 2016. Insights into global diatom distribution and diversity in the world's ocean. Proc. Natl. Acad. Sci. USA 113:E1516-25.
Martín-Cereceda, M. & Cox, E. J. 2011. Morphological variation in a small Thalassiosira species (Bacillariophyta) under different culture regimes. Botanica Mar. 54:563-74.
McLachlan, J., McInnes, A. G. & Falk, M. 1965. Studies on the chitan (chitin: poly-n-acetylglucosamine) fibers of the diatom Thalassiosira fluviatilis Hustedt: I. Production and isolation of chitan fibers. Can. J. Bot. 43:707-13.
Medlin, L., Elwood, H., Stickel, S. & Sogin, M. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491-9.
Meibom, K. L., Li, X. B., Nielsen, A. T., Wu, C. Y., Roseman, S. & Schoolnik, G. K. 2004. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA 101:2524-9.
Meunier, A. 1910. Microplankton des Mers de Barents et de Kara. Duc d'Orleans, ‘Campagne Arctique de 1907’. Charles Bulens Brux. 355 pp.
Mönnich, J., Tebben, J., Bergemann, J., Case, R., Wohlrab, S. & Harder, T. 2020. Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible. ISME J. 14:1614-25.
Moore, E. R., Bullington, B. S., Weisberg, A. J., Jiang, Y., Chang, J. & Halsey, K. H. 2017. Morphological and transcriptomic evidence for ammonium induction of sexual reproduction in Thalassiosira pseudonana and other centric diatoms. PLoS ONE 12:e0181098.
Mühlenbruch, M., Grossart, H. P., Eigemann, F. & Voss, M. 2018. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ. Microbiol. 20:2671-85.
Myklestad, S. & Haug, A. 1972. Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. J. Exp. Mar. Biol. Ecol. 9:125-36.
Nalin, D. R., Daya, V., Reid, A., Levine, M. M. & Cisneros, L. 1979. Adsorption and growth of Vibrio cholerae on chitin. Infect. Immun. 25:768-70.
Nelson, D. M., Tréguer, P., Brzezinski, M., Leynaert, A. & Quéguiner, B. 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cy. 9:359-72.
Neu, T. R. & Kuhlicke, U. 2017. Fluorescence lectin bar-coding of glycoconjugates in the extracellular matrix of biofilm and bioaggregate forming microorganisms. Microorganisms. 5:5.
Neu, T. R. & Lawrence, J. R. 2014. Investigation of microbial biofilm structure by laser scanning microscopy. Adv. Biochem. Eng. Biotechnol. 146:1-51.
Oguri, S. 2005. Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast. Glycoconj. J. 22:453-61.
Panschin, I., Becher, M., Verbarg, S., Spröer, C., Rohde, M., Schüler, M., Amann, R. I., Harder, J., Tindall, B. J. & Hahnke, R. L. 2017. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of Gramella gaetbulicola Cho et al. 2011. Int. J. Syst. Evol. Microbiol. 67:697-703.
Pickett-Heaps, J. 2002. Cell division and morphogenesis of the centric diatom Chaetoceros decipiens (Bacillariophyceae) II. Electron microscopy and a new paradigm for tip growth. J. Phycol. 34:995-1004.
Pietrzyk, A. J., Bujacz, A., Mak, P., Potempa, B. & Niedziela, T. 2015. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool. Int. J. Biol. Macromol. 81:1059-68.
Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. 2019. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 13:1119-32.
Rinta-Kanto, J. M., Sun, S., Sharma, S., Kiene, R. P. & Moran, M. A. 2012. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ. Microbiol. 14:228-39.
Round, F. E., Crawford, R. M. & Mann, D. G. 2007. Diatoms: Biology and morphology of the genera. Cambridge University Press, Cambridge, UK, 768 pp.
Rynearson, T. A., Newton, J. A. & Armbrust, E. V. 2006. Spring bloom development, genetic variation, and population succession in the planktonic diatom Ditylum brightwellii. Limnol. Oceanogr. 51:1249-61.
Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. 2014. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 6:339-67.
Sapp, M., Schwaderer, A. S., Wiltshire, K. H., Hoppe, H. G., Gerdts, G. & Wichels, A. 2007. Species-specific bacterial communities in the phycosphere of microalgae? Microb. Ecol. 53:683-99.
Sar, E., Sunesen, I., Lavigne, A. & Lofeudo, S. 2011. Thalassiosira rotula, a heterotypic synonym of Thalassiosira gravida: Morphological evidence. Diatom Res. 26:109-19.
Singh, S., Devi, S. & Ng, T. 2014. Banana Lectin: A brief review. Mol. Basel Switz. 19:18817-27.
Singh, T., Wu, J. H., Peumans, W. J., Rougé, P., Van Damme, E. J. M. & Wu, A. M. 2007. Recognition profile of Morus nigra agglutinin (Morniga G) expressed by monomeric ligands, simple clusters and mammalian polyvalent glycotopes. Mol. Immunol. 44:451-62.
Syvertsen, E. E. 1977. Thalassiosira rotula and T. gravida: ecology and morphology. Beih. Zur Nova Hedwig. 54:99-112.
Teeling, H., Fuchs, B. M., Bennke, C. M., Krüger, K., Chafee, M., Kappelmann, L., Reintjes, G. et al. 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife 5:e11888.
Torres-Monroy, I. & Ullrich, M. S. 2018. Identification of bacterial genes expressed during diatom-bacteria interactions using an in vivo expression technology approach. Front. Mar. Sci. 5:200.
Van der Auwera, G. & De Wachter, R. 1998. Structure of the large subunit rDNA from a diatom, and comparison between small and large subunit ribosomal RNA for studying stramenopile evolution. J. Eukaryot. Microbiol. 45:521-7.
Vidal-Melgosa, S., Sichert, A., Francis, T. B., Bartosik, D., Niggemann, J., Wichels, A., Willats, W. G. T. et al. 2021. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12:1150.
Wagner-Döbler, I., Ballhausen, B., Berger, M., Brinkhoff, T., Buchholz, I., Bunk, B., Cypionka, H. et al. 2010. The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J. 4:61-77.
Walsby, A. E. & Xypolita, A. 1977. The form resistance of chain fibers attached to the cells of Thalsassiosira fluviatilis. Br. J. Psychol. 12:215-23.
Wang, H., Tomasch, J., Jarek, M. & Wagner-Döbler, I. 2014. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front. Microbiol. 5:311.
Whittaker, K. A., Rignanese, D. R., Olson, R. J. & Rynearson, T. A. 2012. Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology. BMC Evol. Biol. 12:209.
Windler, M., Bova, D., Kryvenda, A., Straile, D., Gruber, A. & Kroth, P. G. 2014. Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycol. Res. 62:269-81.
Zhou, J., Bruns, M. A. & Tiedje, J. M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62:316-22.